Side-Channel Attacks on Threshold Implementations Using a Glitch Algebra

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10052)

Abstract

Threshold implementations allow to implement circuits using secret sharing in a way to thwart side-channel attacks based on probing or power analysis. It was proven they resist to attacks based on glitches as well. In this report, we show the limitations of these results. Concretely, this approach proves security against attacks which use the average power consumption of an isolated circuit. But there is no security provided against attacks using a non-linear function of the power traces (such as the mean of squares or the majority of a threshold function), and there is no security provided for cascades of circuits, even with the power mean. We take as an example the threshold implementation of the AND function by Nikova, Rechberger, and Rijmen with 3 and 4 shares. We further consider a proposal for higher-order by Bilgin et al.

References

  1. 1.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_18 Google Scholar
  2. 2.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_26 Google Scholar
  3. 3.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_24 CrossRefGoogle Scholar
  5. 5.
    Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_24 CrossRefGoogle Scholar
  6. 6.
    Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_26 CrossRefGoogle Scholar
  7. 7.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308_38 CrossRefGoogle Scholar
  8. 8.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptology 24, 292–321 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_37 CrossRefGoogle Scholar
  10. 10.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The world is not enough: another look on second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_7 CrossRefGoogle Scholar
  11. 11.
    Trichina, E., Korkishko, T., Lee, K.H.: Small size, low power, side channel-immune AES coprocessor: design and synthesis results. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005). doi:10.1007/11506447_10 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.EPFLLausanneSwitzerland

Personalised recommendations