An Automatic Cryptanalysis of Transposition Ciphers Using Compression

  • Noor R. Al-Kazaz
  • Sean A. Irvine
  • William J. Teahan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10052)


Automatically recognising valid decryptions as a result of ciphertext only cryptanalysis of simple ciphers is not an easy issue and still considered as a taxing problem. In this paper, we present a new universal compression-based approach to the automatic cryptanalysis of transposition ciphers. In particular, we show how a Prediction by Partial Matching (PPM) compression model, a scheme that performs well at many language modelling tasks, can be used to automatically recognise the valid decrypt with a 100 % success rate. We also show how it significantly outperforms another compression scheme, Gzip. In this paper, we propose a full mechanism for the automatic cryptanalysis of transposition ciphers which also automatically adds spaces to decrypted texts, again using a compression-based approach, in order to achieve readability.


Cryptanalysis Transposition ciphers Plaintext recognition Compression PPM Word segmentation 


  1. 1.
    Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice-Hall, Upper Saddle River (1990)Google Scholar
  2. 2.
    Bergmann, K.P., Scheidler, R., Jacob, C.: Cryptanalysis using genetic algorithms. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1099–1100. ACM, July 2008Google Scholar
  3. 3.
    Chen, J., Rosenthal, J.S.: Decrypting classical cipher text using Markov chain Monte Carlo. Stat. Comput. 22(2), 397–413 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Clark, A.J.: Optimisation heuristics for cryptology. Ph.D. thesis, Queensland University of Technology (1998)Google Scholar
  5. 5.
    Clark, A.J.: Modern optimisation algorithms for cryptanalysis. In: Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 258–262. IEEE, December 1994Google Scholar
  6. 6.
    Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)CrossRefGoogle Scholar
  7. 7.
    Delman, B.: Genetic algorithms in cryptography (2004)Google Scholar
  8. 8.
    Dimovski, A., Gligoroski, D.: Attacks on the transposition ciphers using optimization heuristics. In: International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST, October 2003Google Scholar
  9. 9.
    Gailly, J.L.: GNU gzip (2010)Google Scholar
  10. 10.
    Gaines, H.F.: Cryptanalysis: Study a of Ciphers and Their Solutions. Dover, New York (1956)Google Scholar
  11. 11.
    Giddy, J.P., Safavi-Naini, R.: Automated cryptanalysis of transposition ciphers. Comput. J. 37(5), 429–436 (1994)CrossRefGoogle Scholar
  12. 12.
    Grundlingh, W., Van Vuuren, J.H.: Using genetic algorithms to break a simple cryptographic cipher. Retrieved 31 March 2003Google Scholar
  13. 13.
    Howard, P.G.: The design and analysis of efficient lossless data compression systems (1993)Google Scholar
  14. 14.
    Howard, P.G., Vitter, J.S.: Practical implementations of arithmetic coding. Department of computer science. Brown university. Providence, Rhode Island 02912, CS-91-45, July 1991Google Scholar
  15. 15.
    Irvine, S.A.: Compression and cryptology. Ph.D. thesis, University of Waikato, NZ (1997)Google Scholar
  16. 16.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetMATHGoogle Scholar
  17. 17.
    Matthews, R.A.: The use of genetic algorithms in cryptanalysis. Cryptologia 17(2), 187–201 (1993)CrossRefGoogle Scholar
  18. 18.
    Robling, D., Dorothy, E.: Cryptography and data security (1982)Google Scholar
  19. 19.
    Russell, M.D., Clark, J.A., Stepney, S.: Making the most of two heuristics: breaking transposition ciphers with ants. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4, pp. 2653–2658. IEEE, December 2003Google Scholar
  20. 20.
    Seberry, J., Pieprzyk, J.: Cryptography: An Introduction to Computer Security. Prentice Hall, Sydney (1989)MATHGoogle Scholar
  21. 21.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sinkov, A.: Elementary Cryptanalysis. Mathematics Association of America, Random House (1966)MATHGoogle Scholar
  23. 23.
    Stamp, M., Low, R.M.: Applied Cryptanalysis: Breaking Ciphers in the Real World. John Wiley and Sons, Hoboken (2007)CrossRefGoogle Scholar
  24. 24.
    Teahan, W.J.: Modelling English text. Ph.D. thesis, University of Waikato, New Zealand (1998)Google Scholar
  25. 25.
    Teahan, W.J., Cleary, J.G.: The entropy of English using PPM-based models. In: Proceedings Data Compression Conference, Snowbird, Utah, pp. 53–62 (1996)Google Scholar
  26. 26.
    Toemeh, R., Arumugam, S.: Breaking Transposition Cipher with Genetic Algorithm. Electron. Electr. Eng. 7(79) (2007)Google Scholar
  27. 27.
    Wulandari, G.S., Rismawan, W., Saadah, S.: Differential evolution for the cryptanalysis of transposition cipher. In: 2015 3rd International Conference on Information and Communication Technology (ICoICT), pp. 45–48. IEEE, May 2015Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Noor R. Al-Kazaz
    • 1
  • Sean A. Irvine
    • 1
  • William J. Teahan
    • 1
  1. 1.School of Computer ScienceBangor UniversityBangor, GwyneddUK

Personalised recommendations