An Automatic Cryptanalysis of Transposition Ciphers Using Compression

  • Noor R. Al-Kazaz
  • Sean A. Irvine
  • William J. Teahan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10052)

Abstract

Automatically recognising valid decryptions as a result of ciphertext only cryptanalysis of simple ciphers is not an easy issue and still considered as a taxing problem. In this paper, we present a new universal compression-based approach to the automatic cryptanalysis of transposition ciphers. In particular, we show how a Prediction by Partial Matching (PPM) compression model, a scheme that performs well at many language modelling tasks, can be used to automatically recognise the valid decrypt with a 100 % success rate. We also show how it significantly outperforms another compression scheme, Gzip. In this paper, we propose a full mechanism for the automatic cryptanalysis of transposition ciphers which also automatically adds spaces to decrypted texts, again using a compression-based approach, in order to achieve readability.

Keywords

Cryptanalysis Transposition ciphers Plaintext recognition Compression PPM Word segmentation 

Notes

Acknowledgments

The authors would like to thank the Iraqi Ministry of Higher Education and Scientific Research (MOHESR)-Baghdad University-College of science for women for supporting (sponsoring) this work.

References

  1. 1.
    Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice-Hall, Upper Saddle River (1990)Google Scholar
  2. 2.
    Bergmann, K.P., Scheidler, R., Jacob, C.: Cryptanalysis using genetic algorithms. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1099–1100. ACM, July 2008Google Scholar
  3. 3.
    Chen, J., Rosenthal, J.S.: Decrypting classical cipher text using Markov chain Monte Carlo. Stat. Comput. 22(2), 397–413 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Clark, A.J.: Optimisation heuristics for cryptology. Ph.D. thesis, Queensland University of Technology (1998)Google Scholar
  5. 5.
    Clark, A.J.: Modern optimisation algorithms for cryptanalysis. In: Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 258–262. IEEE, December 1994Google Scholar
  6. 6.
    Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)CrossRefGoogle Scholar
  7. 7.
    Delman, B.: Genetic algorithms in cryptography (2004)Google Scholar
  8. 8.
    Dimovski, A., Gligoroski, D.: Attacks on the transposition ciphers using optimization heuristics. In: International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST, October 2003Google Scholar
  9. 9.
    Gailly, J.L.: GNU gzip (2010)Google Scholar
  10. 10.
    Gaines, H.F.: Cryptanalysis: Study a of Ciphers and Their Solutions. Dover, New York (1956)Google Scholar
  11. 11.
    Giddy, J.P., Safavi-Naini, R.: Automated cryptanalysis of transposition ciphers. Comput. J. 37(5), 429–436 (1994)CrossRefGoogle Scholar
  12. 12.
    Grundlingh, W., Van Vuuren, J.H.: Using genetic algorithms to break a simple cryptographic cipher. Retrieved 31 March 2003Google Scholar
  13. 13.
    Howard, P.G.: The design and analysis of efficient lossless data compression systems (1993)Google Scholar
  14. 14.
    Howard, P.G., Vitter, J.S.: Practical implementations of arithmetic coding. Department of computer science. Brown university. Providence, Rhode Island 02912, CS-91-45, July 1991Google Scholar
  15. 15.
    Irvine, S.A.: Compression and cryptology. Ph.D. thesis, University of Waikato, NZ (1997)Google Scholar
  16. 16.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetMATHGoogle Scholar
  17. 17.
    Matthews, R.A.: The use of genetic algorithms in cryptanalysis. Cryptologia 17(2), 187–201 (1993)CrossRefGoogle Scholar
  18. 18.
    Robling, D., Dorothy, E.: Cryptography and data security (1982)Google Scholar
  19. 19.
    Russell, M.D., Clark, J.A., Stepney, S.: Making the most of two heuristics: breaking transposition ciphers with ants. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4, pp. 2653–2658. IEEE, December 2003Google Scholar
  20. 20.
    Seberry, J., Pieprzyk, J.: Cryptography: An Introduction to Computer Security. Prentice Hall, Sydney (1989)MATHGoogle Scholar
  21. 21.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sinkov, A.: Elementary Cryptanalysis. Mathematics Association of America, Random House (1966)MATHGoogle Scholar
  23. 23.
    Stamp, M., Low, R.M.: Applied Cryptanalysis: Breaking Ciphers in the Real World. John Wiley and Sons, Hoboken (2007)CrossRefGoogle Scholar
  24. 24.
    Teahan, W.J.: Modelling English text. Ph.D. thesis, University of Waikato, New Zealand (1998)Google Scholar
  25. 25.
    Teahan, W.J., Cleary, J.G.: The entropy of English using PPM-based models. In: Proceedings Data Compression Conference, Snowbird, Utah, pp. 53–62 (1996)Google Scholar
  26. 26.
    Toemeh, R., Arumugam, S.: Breaking Transposition Cipher with Genetic Algorithm. Electron. Electr. Eng. 7(79) (2007)Google Scholar
  27. 27.
    Wulandari, G.S., Rismawan, W., Saadah, S.: Differential evolution for the cryptanalysis of transposition cipher. In: 2015 3rd International Conference on Information and Communication Technology (ICoICT), pp. 45–48. IEEE, May 2015Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Noor R. Al-Kazaz
    • 1
  • Sean A. Irvine
    • 1
  • William J. Teahan
    • 1
  1. 1.School of Computer ScienceBangor UniversityBangor, GwyneddUK

Personalised recommendations