Skip to main content

Genetic Algorithm Based Speed Control of Electric Vehicle with Electronic Differential

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9873))

Abstract

This paper discus about speed control of electric-vehicle (EV) Permanent Magnet Synchronous Motor (PMSM) drive using Electronic Differential Controller (EDC) and Genetic Algorithm (GA) tuning. EV are electrically powered by rechargeable batteries there by making it eco friendly and leading to its growing interest among customers. When a vehicle is driven along a curved road, the speed of the inner wheel should be less than the outer wheel. This type of controlling is done by EDC, which supplies necessary torque for each driving wheel and allows different wheel speeds in any curve and distribute the power to the wheel motor according to the steering angle. The control structure is based on the Field oriented control (FOC) for each front wheel-motor. In this work, the propulsion system consists of two PMSM for the two front driving wheels and, GA is implemented for optimizing PI controller parameters. Simulations is carried out in MATLAB SIMULINK.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajashekara, K.: History of electric vehicles in general motors. IEEE Trans. Ind. Appl. 30, 897–904 (1994)

    Article  Google Scholar 

  2. Chan, C.C., Chau, K.T.: Power electronics challenges in electric vehicles. In: Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation, IECON 1993 (1993)

    Google Scholar 

  3. Pillay, P., Krishnan, R.: Control characteristics and speed controller design for a high performance permanent magnet synchronous motor drive. IEEE Trans. Energy Convers. 19(1), 151–159 (2004)

    Article  Google Scholar 

  4. Chau, K.T., Chan, C.C., Liu, C.: Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2246–2257 (2008)

    Article  Google Scholar 

  5. Rahman, M.A., Zhou, P.: Analysis of brushless permanent magnet synchronous motors. IEEE Trans. Ind. Electron. 43(2), 256–267 (1996)

    Article  Google Scholar 

  6. Bose, B.K.: Power Electronics and AC Drives. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  7. Ravi, A., Palani, S.: Robust electronic differential controller for an electric vehicle. Am. J. Appl. Sci. 10(11), 1356–1362 (2013). ISSN: 1546-9239, ©2013 Science Publication

    Article  Google Scholar 

  8. Elmas, C., Akcayol, M.A.: Genetic PI controller for a permanent magnet Synchronous motor. In: International XIIth Turkish Symposium on Artificial Intelligence and Neural Networks – TAINN 2003 (2003)

    Google Scholar 

  9. Krishnan, R.: Electric Motor Drives: Modeling, Analysis, and Control. Prentice-Hall, Upper Saddle River (2003)

    Google Scholar 

  10. Krause, P., Wasynczuk, O., Sudhoff, S., Pekarek, S.: Analysis of Electric Machinery and Drive Systems. Wiley, New York (2013)

    Book  Google Scholar 

  11. Kulkarni, S.S., Thosar, A.G.: Mathematical modeling and simulation of permanent magnet synchronous machine. Int. J. Electron. Electr. Eng. 1(2), 66–71 (2013)

    Article  Google Scholar 

  12. Abu-Rub, H., Iqbal, A., Guzinski, J.: High Performance Control of AC Drives with MATLAB/Simulink Models. Wiley, Chichester (2012)

    Book  Google Scholar 

  13. Hartani, K., Bourahla, M., Miloud, Y., Sekour, M.: Electronic differential with direct torque fuzzy control for vehicle propulsion system. Turk. J. Electr. Eng. Comput. Sci. 17(1), 21–38 (2009)

    Google Scholar 

  14. Haddoun, A., Benbouzid, M.E.H., Diallo, D., Abdessemed, R., Ghouili, J., Srairi, K.: Modeling, analysis, and neural network control of an EV electrical differential. IEEE Trans. Ind. Electron. 55(6), 2286–2294 (2008)

    Article  Google Scholar 

  15. Draou, A.: A simplified sliding mode controlled electronic differential for an electric vehicle with two independent wheel drives. Energ. Power Eng. 5, 416–421 (2013). Published Online August 2013. http://www.scirp.org/journal/epe

    Article  Google Scholar 

  16. Kunto, W.W., Jeong, S.: Genetic algorithm tuned PI controller on PMSM simplified vector control. J. Cent. South Univ. 20, 3042–3048 (2013). doi:10.1007/s117710131827x

    Article  Google Scholar 

  17. Uddin, M.N., Abido, M.A., Rahman, M.A.: Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives. IEEE Trans. Ind. Appl. 41(1), 246–252 (2005)

    Article  Google Scholar 

  18. Pant, M., Thangaraj, R., Abraham, A.: Optimal tuning of PI speed controller using nature inspired heuristics. In: Eighth International Conference on Intelligent Systems Design and Applications (2008)

    Google Scholar 

  19. Zhu, Z.Q., Howe, D.: Electrical machines and drives for electric, hybrid, and fuel cell vehicles. IEEE Trans. Ind. Electron. 95(4), 746–765 (2007)

    Google Scholar 

  20. Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779–787 (2002)

    Article  Google Scholar 

  21. Rehman, H.U., Xu, L.: Alternative energy vehicles drive system: control, flux and torque estimation, and efficiency optimization. IEEE Trans. Veh. Technol. 60(8), 3625–3634 (2011)

    Article  Google Scholar 

  22. Salmasi, F.R.: Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends. IEEE Trans. Veh. Technol. 56(5), 2393–2404 (2007)

    Article  Google Scholar 

  23. Da Silva, W.G., Acarnley, P.P., Finch, J.W.: Application of GA to online tuning of electric drive speed controller. IEEE Trans. Ind. Electron. 47(1), 217–219 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nair R. Deepthi .

Editor information

Editors and Affiliations

A Appendix: Motor Parameters

A Appendix: Motor Parameters

Resistance 0.18 Ω, d−axis inductance 0.000835H, q−axis inductance 0.000835H, Permanent magnet flux 0.07145 Wb, Pole pairs 4.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Deepthi, N.R., Febin Daya, J.L. (2016). Genetic Algorithm Based Speed Control of Electric Vehicle with Electronic Differential. In: Panigrahi, B., Suganthan, P., Das, S., Satapathy, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2015. Lecture Notes in Computer Science(), vol 9873. Springer, Cham. https://doi.org/10.1007/978-3-319-48959-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48959-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48958-2

  • Online ISBN: 978-3-319-48959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics