Grada, A., Weinbrecht, K.: Next-generation sequencing: methodology and application. J. Invest. Dermatol. 133(8), e11 (2013)
CrossRef
Google Scholar
Miller, T., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., Shapiro, C., Jacob, S., Majumder, S.: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283(44), 29897–29903 (2008)
CrossRef
Google Scholar
Bartel, D.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)
CrossRef
Google Scholar
Jacobsen, A., Silber, J., Harinath, G., Huse, J., Schultz, N., Sander, C.: Analysis of microRNA-target interactions across diverse cancer types. Nat. Struct. Mol. Biol. 20(11), 1325–1332 (2013)
CrossRef
Google Scholar
Bang-Berthelsen, C., Pedersen, L., Fløyel, T., Hagedorn, P., Gylvin, T., Pociot, F.: Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics 12(1), 97 (2011)
CrossRef
Google Scholar
Song, H., Wang, Q., Guo, Y., Liu, S., Song, R., Gao, X., Dai, L., Li, B., Zhang, D., Cheng, J.: Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect. Dis. 13(1), 257 (2013)
CrossRef
Google Scholar
Hunsberger, J., Fessler, E., Chibane, F., Leng, Y., Maric, D., Elkahloun, A., Chuang, D.: Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am. J. Transl. Res. 5(4), 450–464 (2013)
Google Scholar
Baskerville, S., Bartel, D.: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3), 241–247 (2005)
CrossRef
Google Scholar
Rodriguez, A., Griffiths-Jones, S., Ashurst, J., Bradley, A.: Identification of mammalian microRNA host genes and transcription units. Genome Res. 14(10a), 1902–1910 (2004)
CrossRef
Google Scholar
Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N., Perera, R.: Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004)
CrossRef
Google Scholar
Grimson, A., Farh, K., Johnston, W., Garrett-Engele, P., Lim, L., Bartel, D.: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27(1), 91–105 (2007)
CrossRef
Google Scholar
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
CrossRef
MATH
Google Scholar
Boser, B.E., Guyon, I.M., Vapnik, N.V.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)
Google Scholar
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomeld, D.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
CrossRef
Google Scholar
Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, San Francisco (1977)
MATH
Google Scholar
Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, vol. 2. Wiley, New York (1999)
MATH
Google Scholar
Yang, H., Moody, J.: Feature selection based on joint mutual information. In: Proceedings of the International Symposium on Advances in Intelligent Data Analysis, pp. 22–25 (1999)
Google Scholar
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
CrossRef
Google Scholar
Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5(4), 537–550 (1994)
CrossRef
Google Scholar
Lancucki, A., Saha, I., Lipinski, P.: A new evolutionary gene selection technique. In: Proceedings of the International IEEE Conference on Evolutionary Computing, pp. 1612–1619 (2015)
Google Scholar
Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. 11, 86–92 (1940)
MathSciNet
CrossRef
MATH
Google Scholar
Xie, B., Ding, Q., Han, H., Wu, D.: miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29(5), 638–644 (2013)
CrossRef
Google Scholar
Saha, I., Maulik, U., Plewczynski, D.: A new multi-objective technique for differential fuzzy clustering. Appl. Soft Comput. 11(2), 2765–2776 (2011)
CrossRef
Google Scholar
Saha, I., Plewczynski, D., Maulik, U., Bandyopadhyay, S.: Improved differential evolution for microarray analysis. Int. J. Data Min. Bioinform. 6(1), 86–103 (2012)
CrossRef
Google Scholar
Saha, I., Rak, B., Bhowmick, S.S., Maulik, U., Bhattacharjee, D., Koch, U., Lazniewski, M., Plewczynski, D.: Binding activity prediction of cyclin-dependent inhibitors. J. Chem. Inf. Model. 55(7), 1469–1482 (2015)
CrossRef
Google Scholar
Bhowmick, S.S., Saha, I., Mazzocco, G., Maulik, U., Rato, L., Bhattacharjee, D., Plewczynski, D.: Application of RotaSVM for HLA class II protein-peptide interaction prediction. In: Proceedings of the 5th International Conference on Bioinformatics, pp. 178–185 (2014)
Google Scholar
Mazzocco, G., Bhowmick, S.S., Saha, I., Maulik, U., Bhattacharjee, D., Plewczynski, D.: MaER: a new ensemble based multiclass classifier for binding activity prediction of HLA Class II proteins. in: Proceedings of the 6th International Conference on Pattern Recognition and Machine Intelligence, pp. 462–471 (2015)
Google Scholar
Saha, I., Zubek, J., Klingström, T., Forsberg, S., Wikander, J., Kierczak, M., Maulik, U., Plewczynski, D.: Ensemble learning prediction of protein-protein interactions using proteins functional annotations. Mol. BioSyst. 10(4), 820–830 (2014)
CrossRef
Google Scholar