Skip to main content

Thermoelectric Materials

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

Thermoelectricity is one of the oldest phenomena to be observed in semiconductors, with discovery of the various thermoelectric effects dating back to the early part of the 19th century. These effects manifest themselves as the appearance of a voltage in a circuit comprised of two different conductors due to a temperature difference (Seebeck effect ), or as the absorption and evolution of heat at the junction of two different materials under electrical current excitation (Peltier effect ). These effects can be utilized in devices to generate electrical power from waste heat or to provide solid state cooling, respectively.

This chapter reviews the main factors governing thermoelectric effects in solids, and how these factors may be manipulated to produce materials with high thermoelectric figure of merit. The first portion of the chapter covers the main features that determine electrical and thermal transport in crystalline semiconductors, while the latter portion discusses several new approaches to this old problem that hold promise for highly efficient thermoelectric materials in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. US Department of Energy: Lawrence Livermore National Laboratory, Estimated Energy Flow Chart, https://flowcharts.llnl.gov/

  2. US Department of Energy: Alternative Fuels Data Center, Fuel properties Comparison, www.afdc.energy.gov/fuels/fuel_comparison_chart_OnlinePDF.pdf

  3. H.J. Goldsmid: Applications of Thermoelectricity (Methuen, London 1960)

    Google Scholar 

  4. T.J. Seebeck: Abh. Akad. Wiss. Berlin 21, 289 (1822)

    Google Scholar 

  5. W. Haken: Ann. Phys. 32, 291 (1910)

    CAS  Google Scholar 

  6. E. Altenkrich: Phys. Z. 12, 920 (1911)

    Google Scholar 

  7. A.F. Ioffe: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London 1957)

    Google Scholar 

  8. L.D. Hicks, M.S. Dresselhaus: Phys. Rev. B 47, 12727 (1993)

    CAS  Google Scholar 

  9. L.D. Hicks, M.S. Dresselhaus: Phys. Rev. B 47, 16631 (1993)

    CAS  Google Scholar 

  10. G.A. Slack: New materials and performance limits for thermoelectric cooling. In: CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, Boca Raton 1995) p. 407

    Google Scholar 

  11. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli: Nat. Nanotechnol. 8, 471 (2013)

    CAS  Google Scholar 

  12. D.T. Morelli, G.P. Meisner: J. Appl. Phys. 77, 3777 (1995)

    CAS  Google Scholar 

  13. G.S. Nolas, G.A. Slack: Am. Sci. 89, 136 (2001)

    Google Scholar 

  14. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn: Nature 413, 597 (2001)

    CAS  Google Scholar 

  15. D.T. Morelli, J.P. Heremans, C.M. Thrush: Phys. Rev. B 67, 035206 (2003)

    Google Scholar 

  16. A. Akhiezer: Fiz. Zh. 1, 277 (1939)

    Google Scholar 

  17. G. Leibfried, E. Schloemann: Akad. Wiss. Göttingen, Math. Phys. Kl. A 4, 71 (1954)

    Google Scholar 

  18. A.W. Lawson: J. Phys. Chem. Solids 3, 155 (1957)

    Google Scholar 

  19. R. Berman: Thermal Conduction in Solids (Clarendon, Oxford 1976)

    Google Scholar 

  20. G.A. Slack: In: Solid State Physics, , ed. by F. Seitz, D. Turnbull, Vol. 34 (Academic, New York 1979) p. 1

    Google Scholar 

  21. I. Pomeranchuk: J. Phys. USSR 4, 259 (1941)

    CAS  Google Scholar 

  22. P.G. Klemens: Proc. Phys. Soc. Sect. A 68, 1113 (1955)

    Google Scholar 

  23. A.V. Ioffe, A.F. Ioffe: Izv. Akad. Nauk SSSR Ser. Fiz. 20, 65 (1956)

    CAS  Google Scholar 

  24. B. Abeles: Phys. Rev. 131, 1906 (1963)

    Google Scholar 

  25. R.C. Zeller, R.O. Pohl: Phys. Rev. B 4, 2029 (1971)

    Google Scholar 

  26. D.G. Cahill, R.O. Pohl: Phys. Rev. B 35, 4067 (1987)

    CAS  Google Scholar 

  27. L.D. Dudkin, N.K. Abrikosov: Sov. J. Inorg. Chem. 2, 212 (1957)

    CAS  Google Scholar 

  28. L.D. Dudkin: Sov. Phys. Tech. Phys. 3, 216 (1958)

    CAS  Google Scholar 

  29. L.D. Dudkin, N.K. Abrikosov: Sov. Phys. Solid State 1, 126 (1959)

    Google Scholar 

  30. B.N. Zobrina, L.D. Dudkin: Sov. Phys. Solid State 1, 1688 (1960)

    Google Scholar 

  31. W. Jeitschko, D. Braun: Acta Cryst. B 33, 3401 (1977)

    Google Scholar 

  32. B.X. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.-P. Fleurial, T. Caillat, A. Borshchevsky: Phys. Rev. B 55, 1476 (1997)

    CAS  Google Scholar 

  33. X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang: Appl. Phys. Lett. 92, 182101 (2008)

    Google Scholar 

  34. L. Zhang, A. Grytsiv, P. Rogl, M. Zehetbauer: J. Phys. D Appl. Phys. 42, 225405 (2009)

    Google Scholar 

  35. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge: Science 297, 2229 (2002)

    CAS  Google Scholar 

  36. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis: Science 303, 818 (2004)

    CAS  Google Scholar 

  37. H. Fleischmann: Z. Naturforsch. 16a, 765 (1961)

    Google Scholar 

  38. T. Irie, T. Takahama, T. Ono: Jap. J. Appl. Phys. 2, 72 (1963)

    CAS  Google Scholar 

  39. G.A. Slack: Phys. Rev. 105, 832 (1957)

    CAS  Google Scholar 

  40. G.A. Slack, M.A. Hussain: J. Appl. Phys. 70, 2694 (1991)

    CAS  Google Scholar 

  41. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis: Nature 489, 414 (2012)

    CAS  Google Scholar 

  42. V.P. Zhuze, V.M. Sergeeva, E.L. Shtrum: Sov. Phys. Tech. Phys. 3, 1925 (1958)

    CAS  Google Scholar 

  43. D.T. Morelli, V. Jovovic, J.P. Heremans: Phys. Rev. Lett. 101, 035901 (2008)

    CAS  Google Scholar 

  44. E.J. Skoug, D.T. Morelli: Phys. Rev. Lett. 107, 235901 (2011)

    Google Scholar 

  45. M.D. Nielsen, V. Ozolins, J.P. Heremans: Energy Environ. Sci. 6, 570 (2013)

    CAS  Google Scholar 

  46. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher: Adv. Energy Mater. 3, 342 (2013)

    CAS  Google Scholar 

  47. X. Lu, D.T. Morelli: Phys. Chem. Chem. Phys. 1(5), 5762 (2013)

    Google Scholar 

  48. X. Lu, D.T. Morelli: MRS Communications 3, 129 (2013)

    CAS  Google Scholar 

  49. J. Heo, G. Laurita, S. Muir, M.A. Subramanian, D.A. Keszler: Chem. Mat. 26, 2047 (2014)

    CAS  Google Scholar 

  50. W. Lai, Y. Wang, D.T. Morelli, X. Lu: Adv. Func. Mater. 25, 3648 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald T. Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morelli, D.T. (2017). Thermoelectric Materials. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_57

Download citation

Publish with us

Policies and ethics