Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Photovoltaic solar cells are gaining wide acceptance for producing clean, renewable electricity. This has been based on more than 40 years of research that has benefited from the revolution in silicon electronics and compound semiconductors in optoelectronics. This chapter gives an introduction into the basic science of photovoltaic solar cells and the challenge of extracting the maximum amount of electrical energy from the available solar energy. In addition to the constraints of the basic physics of these devices, there are considerable challenges in materials synthesis. The latter has become more prominent with the need to reduce the cost of solar module manufacture as it enters mainstream energy production. The chapter is divided into sections dealing with the fundamentals of solar cells and then considering six very different materials systems, from crystalline silicon through to polycrystalline thin films and perovskites. These materials have been chosen because they are all either in production or have the prospect of being in production over the next few years. Many more materials are being considered in research and some of the more exciting, excitonic cells and nanomaterials are mentioned. However, there is insufficient space to give these very active areas of research the justice they deserve. I hope the reader will feel sufficiently inspired by this topic to read further and explore one of the most exciting areas of semiconductor science. The need for high-volume production at low cost has taken the researcher along paths not normally considered in semiconductor devices and it is this that provides an exciting challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Nowak: Report IEA-PVPS T1-27: (International Energy Agency, Paris 2015)

    Google Scholar 

  2. C.H. Henry: J. Appl. Phys. B 51, 4494 (1980)

    CAS  Google Scholar 

  3. W. Shockley, H.J. Queisser: J. Appl. Phys. 32, 510 (1961)

    CAS  Google Scholar 

  4. J. Zhao, A. Wang, M.A. Green: Appl. Phys. Lett. 73, 1991 (1998)

    CAS  Google Scholar 

  5. L. Pirozzi, G. Arabito, F. Artuso, V. Barbarossa, U. Besi-Vetrella, S. Loreti, P. Mangiapane, E. Salza: Sol. Energy Mater. Sol. Cells 65, 287 (2001)

    CAS  Google Scholar 

  6. A.G. Aberle: Sol. Energy Mater. Sol. Cells 65, 239 (2001)

    CAS  Google Scholar 

  7. T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo: Development of highly stable and efficient amorphous silicon based solar cells, Proc. 28th Eur. Photovolt. Solar Energy Conf., 2213, Paris (2013)

    Google Scholar 

  8. S.W. Ahn, S.E. Lee, H.M. Lee: Toward commercialization of triple-junction thin-film silicon solar panel with > 12% efficiency, Proc. 27th Eur. Photovolt. Solar Energy Conf., 3AO5.1, Frankfurt (2012)

    Google Scholar 

  9. N. Bernhard, G.H. Bauer, W.H. Bloss: Prog. Photovolt. Res. Appl. 3, 3 (1995)

    Google Scholar 

  10. A. Jager-Waldau: Sol. Energy 77, 667 (2004)

    Google Scholar 

  11. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Marg, M. Woodhouse: Solar Energy Mater. Solar Cells 114, 110 (2013)

    CAS  Google Scholar 

  12. B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi: 27.6% conversion efficiency, a new record for single-junction solar cells under sun illumination, Proc. 37th IEEE Photovolt. Specialists Conf. (2011)

    Google Scholar 

  13. L.M. Fraas, J.E. Avery: Optoelectron. Dev. Technol. 5, 297 (1990)

    CAS  Google Scholar 

  14. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka: J. Am. Chem. Soc. 131, 6050 (2009)

    CAS  Google Scholar 

  15. N.H. Karam, R.R. King, M. Haddad, J.H. Ermer, H. Yoon, H.L. Cotal, R. Sudharsanan, J.W. Eldredge, K. Edmondson, D.E. Joslin, D.D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B.T. Cavicchi, D.R. Lillington: Sol. Energy Mater. Sol. Cells 66, 453 (2001)

    CAS  Google Scholar 

  16. K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto: AIP Procs. 1556, 22 (2013)

    CAS  Google Scholar 

  17. B.C. Richards, Y. Lin, P. Patel, D. Chumney, P.I.R. Sharps, C. Kerestes, D. Forbes, K. Driscoll, A. Podell, S. Hubbard: Performance and radiation resistance of quantum dot multi-junction solar cells, Proc. 38th IEEE Photovolt. Specialists Conf. (PVSC) (2012) p. 158

    Google Scholar 

  18. J.R. Sites, J.E. Granata, J.F. Hiltner: Solar Energy Mater. Solar Cells 55, 43 (1998)

    CAS  Google Scholar 

  19. J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, B.M. Keyes: J. Cryst. Growth 195, 401 (1998)

    CAS  Google Scholar 

  20. J.F. Geisz, D.J. Friedman, J.S. Ward, A. Duda, W.J. Olavarria, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, K.M. Jones: Appl. Phys. Lett. 93, 123505 (2008)

    Google Scholar 

  21. P. Perez-Higueras, E. Munoz, G. Almonacid, P.G. Vidal: Renew. Sustain. Energy Rev. 15, 1810 (2011)

    Google Scholar 

  22. M. Osborne: (PVTECH, 2015) www.pv-tech.org/news/first_solar_pushes_verified_cdte_cell_efficiency_to_record_21.5 accessed April 2016

  23. X. Wu, J.C. Keane, R.G. Dhere, C. Dehert, D.S. Albin, A. Dude, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon:Proc. 17th Eur. Photovolt. Sol. Energy Conf. II (2001) p. 995

    Google Scholar 

  24. X. Wu: Sol. Energy 77, 803 (2004)

    CAS  Google Scholar 

  25. S. Hegedus: WIREs: Energy Environ. 2, 218 (2012)

    Google Scholar 

  26. N. Strevel, M. Gloeckler: Photovoltaics Int. 17, 1 (2012)

    Google Scholar 

  27. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari: Sol. Energy 77, 831 (2004)

    CAS  Google Scholar 

  28. L. Kranz, S. Buecheler, A.N. Tiwari: Solar Energy Mater. Solar Cells 119, 278 (2013)

    CAS  Google Scholar 

  29. J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose: Nature 511, 334 (2014)

    CAS  Google Scholar 

  30. L. Kranz, C. Gretner, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blosch, E. Cheah, A. Chirila, C.M. Fella, H. Hagendorfer, T. Jager, S. Nishiwaki, A.R. Uhl, S. Nuecheler, A.N. Tiwari: Nature Commun. 4, 2306 (2013)

    Google Scholar 

  31. S.J.C. Irvine, V. Barrioz, D. Lamb, E.W. Jones, R.L. Rowlands-Jones: J. Crystal Growth 310, 5198 (2008)

    CAS  Google Scholar 

  32. G. Kartopu, L.J. Phillips, V. Barrioz, S.J.C. Irvine, S.D. Hodgson, E. Tejedor, D. Dupin, A.J. Clayton, S.L. Rugen-Hankey, K. Durose: Prog. Photovolt. (2015), doi:10.1002/pip.2668

  33. S.J.C. Irvine, D.A. Lamb, A.J. Clayton, G. Kartopu, V. Barrioz: J. Electron. Mater. 43, 2818 (2014)

    CAS  Google Scholar 

  34. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda: Prog. Photovolt. Res. Appl. 11, 225 (2003)

    CAS  Google Scholar 

  35. T. Kamada, T. Yagioka, S. Adachi, A. Handa, K. Fai Tai, T. Kato, H. Sugimoto:Proc. Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 1287 (2016)

    Google Scholar 

  36. I.M. Kotschau, G. Bilger, H.W. Schock: Mater. Res. Soc. Symp. Proc. 763, 263 (2003)

    Google Scholar 

  37. D. Hermann, F. Kessler, K. Hertz, M. Powalla, A. Schulz, J. Schneider, U. Schumacher: Mater. Res. Soc. Symp. Proc. 763, 287 (2003)

    Google Scholar 

  38. S. Hishikawa, T. Satoh, S. Hayashi, Y. Hashimoto, S. Shimakawa, T. Megami, T. Wada: Sol. Energy Mater. Sol. Cells 67, 217 (2001)

    Google Scholar 

  39. C. Candelise, M. Winskel, R. Gross: Prog. Photovolt. 20, 816 (2012)

    Google Scholar 

  40. K. Ito, T. Nakazawa: J. Appl. Phys. 27, 4 (1988)

    Google Scholar 

  41. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro: Appl. Phys. Express. 1, 2 (2008)

    Google Scholar 

  42. W. Wang, M.T. Winkler, O. Gunawan, T. Gokman, T.K. Todorov, Y. Zhu, D.B. Mitzi: Adv. Energy Mater. 4, 1301465 (2014)

    Google Scholar 

  43. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S. Jay Chey, S. Guha: Prog. Photovolt. Res. Appl. 21, 72 (2011)

    Google Scholar 

  44. M. Gratzel: MRS Bull. 30, 23 (2005)

    CAS  Google Scholar 

  45. J. Nelson: Mater. Today 14, 462 (2011)

    CAS  Google Scholar 

  46. T. Ameri, P. Khoram, J. Min, C.J. Brabec: Adv. Mater. 25, 4245 (2013)

    CAS  Google Scholar 

  47. M. Liu, M.B. Johnston, H.J. Snaith: Nature 501, 395 (2013)

    CAS  Google Scholar 

  48. www.solarserver.com/solar-magazine/solar-news/current/2015/kw50/epfl-achieves-21-world-record-efficiency-for-perovskite-solar-pv-cells.html, Accessed December 2015

  49. G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith: ACS Nano 8, 591 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Irvine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Irvine, S. (2017). Solar Cells and Photovoltaics. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_43

Download citation

Publish with us

Policies and ethics