Skip to main content

Experimental Research of Improved Sensor of Atomic Force Microscope

  • Conference paper
  • First Online:
Recent Advances in Systems, Control and Information Technology (SCIT 2016)

Abstract

Atomic force microscope (AFM) – is device widely used in many scientific fields for nano-scale surface scanning. AFM also can be used to probe mechanical stiffness, electrical conductance, resistivity, magnetism and other properties. The main limitation of AFM implementation is relatively low scanning speed. This speed depends from dynamical characteristics of AFM sensor and from surface roughness of scanned sample. Our research is focused on increasing scanning speed of AFM microscope assuming AFM mechanical sensor as sensitive dynamic system. Our proposed method enables increase of scanning speed by modifying some features of mechanical sensor by adding non-linear force to the surface of cantilever of AFM sensor. Proposed method is modelled theoretically using Simulink features. This paper presents research of mechanical sensor of AFM. After performed research, obtained results are presented on graphical form. At the end of paper discussion presented and conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichel, A., Schlecker, B., Ortamns, M., Fantner, J., Anders, J.: Modeling and design of high-speed FM-AFM driver electronics using cadence virtuoso and simulink. IFAC Pap. OnLine 48, 671–672 (2015)

    Article  Google Scholar 

  2. Joseph, A., Wiehn, S.: Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations. Nanotechnology 12, 322–330 (2001)

    Article  Google Scholar 

  3. Martin, M.J., Fathy, H.K., Houston, B.H.: Dynamic simulation of atomic force microscope cantilevers oscillating in liquid. J. Appl. Phys. (2008)

    Google Scholar 

  4. Sohrab, E., Nader, J.: A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces. Ultramicroscopy 117, 31–45 (2012)

    Article  Google Scholar 

  5. Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 290, 688–692 (1993)

    Article  Google Scholar 

  6. Korayem, M.H., Nahavandi, A.: Modeling and simulation of AFM cantilever with two piezoelectric layers submerged in liquid over rough surfaces. Precis. Eng. 42, 261–275 (2015)

    Article  Google Scholar 

  7. Dzedzickis, A., Bučinskas, V., Šešok, N., Iljin, I.: Modelling of mechanical structure, of atomic force microscope. In: 11th International Conference Mechatronic Systems and Materials, Kaunas, Lithuania, pp. 63–64 (2015)

    Google Scholar 

  8. Dzedzickis, A., Bučinskas, V., Šešok, N., Iljin, I., Šutinys, E.: Modelling of dynamic system of atomic force microscope. In: International Conference Mechatronics Ideas for Industrial Applications, Gdansk, Poland (2015)

    Google Scholar 

  9. Bučinskas, V., Dzedzickis, A., Šešok, N., Šutinys, E., Iljin, I.: Research of modified mechanical sensor of atomic force microscope. In: 13th International Conference on Dynamical Systems Theory and Applications, Lodz, Poland (2015)

    Google Scholar 

  10. Hocheng, H., Weng, W.H., Chang, J.H.: Shape effects of micromechanical cantilever sensor Measurem. 45, 2081–2088 (2012)

    Google Scholar 

  11. Viannie, L.R., Joshi, S., Jayanth, G.R., Rajanna, K., Radhakrishna, V.: AFM cantilever with integrated piezoelectric thin film for micro-actuation, In: Sensors, pp. 1–4. IEEE, Taipei (2012)

    Google Scholar 

  12. Bausells, J.: Piezoresistive cantilevers for nanomechanical sensing. Microelectron. Eng. 145, 9–20 (2015)

    Article  Google Scholar 

  13. Su, Y., Brunnschweiler, A., Evans, A.G.R., Ensell, G.: Piezoresistive silicon V-AFM cantilevers for high-speed imaging. Sens. Actuators 76, 139–144 (1999)

    Article  Google Scholar 

  14. Rogers, B., Manning, L., Sulchek, T., Adams, J.D.: Improving tapping mode atomic force microscopy with piezoelectric cantilevers. Ultramicroscopy 100, 267–276 (2004)

    Article  Google Scholar 

  15. Humphris, A.D.L., Miles, M.J., Hobbsb, J.K.: A mechanical microscope: high-speed atomic force microscopy. Appl. Phys. Lett. 86 (2005)

    Google Scholar 

  16. Hosaka, S., Etoh, K., Kikukawa, A., Koyanagi, H.: Megahertz silicon atomic force microscopy AFM cantilever and high-speed readout in AFM-based re-cording. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. 18, 94–99 (2000)

    Article  Google Scholar 

  17. Dzedzickis, A., Bučinskas, V.: Analysis of mechanical structure of atomic force microscope. Sci. Future Lith. 6, 589–594 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytautas Bučinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bučinskas, V., Dzedzickis, A., Šutinys, E., Šešok, N., Iljin, I. (2017). Experimental Research of Improved Sensor of Atomic Force Microscope. In: Szewczyk, R., Kaliczyńska, M. (eds) Recent Advances in Systems, Control and Information Technology. SCIT 2016. Advances in Intelligent Systems and Computing, vol 543. Springer, Cham. https://doi.org/10.1007/978-3-319-48923-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48923-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48922-3

  • Online ISBN: 978-3-319-48923-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics