Development of Graphene Based Leak Detector

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 543)


The following paper presents one of the possible applications of the graphene based flow detector developed at Industrial Research Institute for Automation and Measurements in cooperation with Institute of Electronic Materials Technology, Faculty of Physics of Warsaw University and Apator Powogaz company. Application involves using flow detector to measure the tightness of the water installation fittings. The construction and principle of operation of the developed graphene based leak detector are described in the paper. Results of performed investigation on functional properties and electromagnetic compatibility (EMC) are also presented. The uncertainty of the tightness measurement was determined. Finally, guidelines that should be met while constructing a leak detector are set in the paper.


Flow measurement Tightness testing Leak detection Graphene 



This work has been supported by the National Centre for Research and Development (NCBiR) within the GRAF-TECH program (no. GRAF-TECH/NCBR/02/19/2012). Project “Graphene based, active flow sensors” (acronym FlowGraf).


  1. 1.
    Newaz, A.K.M., Markov, D.A., Prasai, D., Bolotin, K.I.: Graphene transistor as a probe for streaming potential. Nano Lett. 2, 2931–2935 (2012)CrossRefGoogle Scholar
  2. 2.
    Safinowski, M., Winiarski, W., Petruk, O., Szewczyk, R., Gińko, O., Trzcinka, K., Maciąg, M., Łoboda, W.: Advancement in development of graphene flow sensors. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 352, pp. 205–217. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-15835-8_23 Google Scholar
  3. 3.
    Safinowski, M., Winiarski, W., Domański, K., Petruk, O., Dąbrowski, S., Szewczyk, R., Trzcinka, K.: Measuring station for testing of graphene flow sensors. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 649–663. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05353-0_62 CrossRefGoogle Scholar
  4. 4.
    He, R.X., Lin, P., Liu, Z.K., Zhu, H.W., Chan, H.L., Yan, F.: Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett. 12, 1404–1490 (2012)CrossRefGoogle Scholar
  5. 5.
    Missala, T., Szewczyk, R., Kamiński, M., Hamela, M., Winiarski, W., Szałatkiewicz, J., Tomasik, J., Salach, J., Strupiński, W., Pasternak, I., Borkowski, Z.: Study on graphene growth process on various bronzes and copper-plated steel substrates. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 352, pp. 171–180. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-15835-8_19 Google Scholar
  6. 6.
    Gosh, S.H, Sood, A.K., Kumar, N.: Carbon Nanotube Flow Sensors. Science 299, 1042–1044 (2003)CrossRefGoogle Scholar
  7. 7.
    Bartnicki, A., Łopatka, J., Muszyński, T., Wrona, J.: Concept and development of engineer mission support robot. J. KONES 22(1), 269–274 (2015)Google Scholar
  8. 8.
    Sklyar, R.: The Microfluidic Sensors of Liquids, Gases, and Tissues Based on the CNT or Organic FETs. J. Autom. Mob. Rob. Intell. Syst. 1(2), 20–34 (2007)MathSciNetGoogle Scholar
  9. 9.
    Kowalski, A., Safinowski, M., Szewczyk, R., Winiarski, W.: Development of graphene based flow sensor. J. Autom. Mob. Robot. Intell. Syst. 9(4), 55–57 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Industrial Research Institute for Automation and MeasurementsWarsawPoland
  2. 2.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations