Skip to main content

Magnetic Anisotropy Energy of Transition Metal Alloy Clusters

  • Chapter
  • First Online:
Clusters

Abstract

The binary clusters of transition metal atoms form an interesting platform for studying the effects of shape, size, chemical compositions, and ordering on its magnetic properties. Notably, mixed clusters often show higher magnetic moments compared to pure elemental clusters. Due to the reduced dimension of the clusters, they tend to behave as single domain particles. One important parameter of their magnetic behavior is the magnetic anisotropy energy. In this chapter we review previous works on the magnetic anisotropy energy of binary alloy clusters, along with a density functional theory based method to compute the anisotropy energy with applications to binary metal clusters. The clusters of transition metal atoms often show high spin moments but generally are also reactive with the environment. Passivation of the surface atoms can lead to more stable clusters. We have explored one such avenue for passivation in this work. We consider the As@Ni12@As20 cluster which in the neutral state has a magnetic moment of 3 μB. We dope this cluster by substituting various numbers of Ni atoms by Mn atoms. The substitutional doping leads to spin moments located mostly on the Mn atoms. The doping also leads to symmetry breaking and as a consequence the number of structural isomers and spin ordered states for each isomer becomes very large. We have investigated all possible ferromagnetic isomers for a given number of dopants and subsequently all the possible anti-ferromagnetic states for the lowest energy structure were examined. The results show that the encapsulation within the As20 cage stabilizes the clusters and the atomization energy of the clusters increases as the number of dopant increases. These clusters have small energy barrier for reversal of magnetization and also have rich variation in configuration and spin states with many low-lying spin states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Néel L (1949) Ann Géophys 5:99

    Google Scholar 

  2. Jun YW, Seo JW, Cheon A (2008) Acc Chem Res 41:179

    Article  CAS  Google Scholar 

  3. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Chem Rev 115:327

    Article  CAS  Google Scholar 

  4. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    Article  CAS  Google Scholar 

  5. Reddy BV, Khanna SN, Dunlap BI (1993) Phys Rev Lett 70:3323

    Article  CAS  Google Scholar 

  6. Dunlap BI (1990) Phys Rev A 41:5691

    Article  CAS  Google Scholar 

  7. Dunlap BI (1991) Z Phys D Atom Mol Cl 19:255

    Article  CAS  Google Scholar 

  8. Chretien S, Salahub DR (2002) Phys Rev B 66

    Google Scholar 

  9. Vega A, Balbas LC, Dorantesdavila J, Pastor GM (1994) Phys Rev B 50:3899

    Article  CAS  Google Scholar 

  10. Pastor GM, Dorantesdavila J (1995) Phys Rev B 52:13799

    Article  CAS  Google Scholar 

  11. Alvarado P, Dorantes-Davila J, Pastor GM (1998) Phys Rev B 58:12216

    Article  CAS  Google Scholar 

  12. Pastor GM (1998) Curr Probl Conden Matter 161

    Google Scholar 

  13. Munoz-Navia M, Dorantes-Davila J, Zitoun D, Amiens C, Jaouen N, Rogalev A, Respaud M, Pastor GM (2009) Appl Phys Lett 95

    Google Scholar 

  14. Borras-Almenar JJ, Coronado E, Clemente-Juan JM, Palii AV, Tsukerblat BS (2003) Polyhedron 22:2521

    Article  CAS  Google Scholar 

  15. Jones NO, Beltran MR, Khanna SN, Baruah T, Pederson MR (2004) Phys Rev B 70

    Google Scholar 

  16. Jones NO, Khanna SN, Baruah T, Pederson MR (2004) Phys Rev B 70

    Google Scholar 

  17. Datta S, Saha-Dasgupta T (2013) J Phys-Condens Mat 25

    Google Scholar 

  18. Sahoo S, Islam MF, Khanna SN (2015) New J Phys 17

    Google Scholar 

  19. Rohart S, Raufast C, Favre L, Bernstein E, Bonet E, Dupuis V (2006) Phys Rev B 74

    Google Scholar 

  20. Luis F, Bartolome J, Bartolome F, Martinez MJ, Garcia LM, Petroff F, Deranlot C, Wilhelm F, Rogalev A (2006) J Appl Phys 99

    Google Scholar 

  21. Xie YN, Blackman JA (2006) Phys Rev B 74

    Google Scholar 

  22. Bornemann S, Minar J, Staunton JB, Honolka J, Enders A, Kern K, Ebert H (2007) Eur Phys J D 45:529

    Article  CAS  Google Scholar 

  23. Oda T, Yokoo Y, Sakashita H, Tsujikawa M (2009) J Comput Theor Nanosci 6:2603

    Article  CAS  Google Scholar 

  24. Boufala K, Fernandez-Seivane L, Ferrer J, Samah M (2010) J Magn Magn Mater 322:3428

    Article  CAS  Google Scholar 

  25. Islam MF, Khanna SN (2014) J Phys-Condens Mat 26

    Google Scholar 

  26. Giguere A, Foldeaki M, Dunlap RA, Chahine R (1999) Phys Rev B 59:431

    Article  CAS  Google Scholar 

  27. Jamet M, Negrier M, Dupuis V, Tuaillon-Combes J, Melinon P, Perez A, Wernsdorfer W, Barbara B, Baguenard B (2001) J Magn Magn Mater 237:293

    Article  CAS  Google Scholar 

  28. Kortus J, Baruah T, Pederson MR, Ashman C, Khanna SN (2002) Appl Phys Lett 80:4193

    Article  CAS  Google Scholar 

  29. Aguilera-Granja F, Vega A (2009) Phys Rev B 79

    Google Scholar 

  30. Chen HX, Shi DN, Qi JS, Wang BL (2011) J Magn Magn Mater 323:781

    Article  CAS  Google Scholar 

  31. Fink K (2006) Chem Phys 326:297

    Article  CAS  Google Scholar 

  32. Sattler K (1986) Z Phys D Atom Mol Cl 3:223

    Article  CAS  Google Scholar 

  33. Li SF, Xue XL, Jia Y, Zhao GF, Zhang MF, Gong XG (2006) Phys Rev B 73

    Google Scholar 

  34. Mukherjee S, Moranlopez JL (1987) Surf Sci 189:1135

    Article  Google Scholar 

  35. Vega A, Dorantesdavila J, Pastor GM, Balbas LC (1991) Z Phys D Atom Mol Cl 19:263

    Article  CAS  Google Scholar 

  36. Sumiyama K, Suzuki K, Makhlouf SA, Wakoh K, Kamiyama T, Yamamuro S, Konno TJ, Xu YF, Sakurai M, Hihara T (1995) J Non-Cryst Solids 193:539

    Article  Google Scholar 

  37. Manago T, Otani Y, Miyajima H, Akiba E (1996) J Appl Phys 79:5126

    Article  CAS  Google Scholar 

  38. Brayner R, Coradin T, Fievet-Vincent F, Livage J, Fievet F (2005) New J Chem 29:681

    Article  CAS  Google Scholar 

  39. Zitoun D, Respaud M, Fromen M-C, Casanove MJ, Lecante P, Amiens C, Chaudret B (2002) Phys Rev Lett 89:037203

    Article  Google Scholar 

  40. Dennler S, Morillo J, Pastor GM (2004) J Phys-Condens Mat 16:S2263

    Article  CAS  Google Scholar 

  41. Munoz-Navia M, Dorantes-Davila J, Pastor GM (2004) J Phys-Condens Mat 16:S2251

    Article  CAS  Google Scholar 

  42. Tournus F, Blanc N, Tamion A, Hillenkamp M, Dupuis V (2010) Phys Rev B 81

    Google Scholar 

  43. Muñoz-Navia M, Dorantes-Dávila J, Respaud M, Pastor GM (2009) Eur Phys J D 52:171

    Article  Google Scholar 

  44. Blanc N, Diaz-Sanchez LE, Ramos AY, Tournus F, Tolentino HCN, De Santis M, Proux O, Tamion A, Tuaillon-Combes J, Bardotti L, Boisron O, Pastor GM, Dupuis V (2013) Phys Rev B 87

    Google Scholar 

  45. Guirado-Lopez R, Villasenor-Gonzalez P, Dorantes-Davila J, Pastor GM (2003) Eur Phys J D 24:73

    Article  CAS  Google Scholar 

  46. Sahoo S, Hucht A, Gruner ME, Rollmann G, Entel P, Postnikov A, Ferrer J, Fernandez-Seivane L, Richter M, Fritsch D, Sil S (2010) Phys Rev B 82

    Google Scholar 

  47. Liebing S, Martin C, Trepte K, Kortus J (2015) Phys Rev B 91

    Google Scholar 

  48. Pederson MR, Khanna SN (1999) Phys Rev B 60:9566

    Article  CAS  Google Scholar 

  49. Blonski P, Hafner JJ (2011) Phys-Condens Mat 23

    Google Scholar 

  50. Pederson MR, Baruah T (2007) Molecular magnets: phenomenology and theory, chapter 9 in handbook of magnetism and advanced magnetic materials. Wiley, Hoboken

    Google Scholar 

  51. Pederson MR, Jackson KA (1990) Phys Rev B 41:7453

    Article  CAS  Google Scholar 

  52. Jackson K, Pederson MR, Erwin SC (1990) Forces and geometry optimization in 1st-principles atomic cluster calculations, vol 193

    Google Scholar 

  53. Jackson K, Pederson MR (1990) Phys Rev B 42:3276

    Article  CAS  Google Scholar 

  54. Pederson MR, Klein BM, Broughton JQ (1988) Phys Rev B 38:3825

    Article  CAS  Google Scholar 

  55. Pederson MR, Porezag DV, Kortus J, Patton DC (2000) Phys Status Solidi B-Basic Res 217:197

    Article  CAS  Google Scholar 

  56. Pederson MR, Baruah T, Allen PB, Schmidt C (2005) J Chem Theory Comput 1:590

    Article  CAS  Google Scholar 

  57. Pederson MR, Khanna SN (1999) Chem Phys Lett 307:253

    Article  CAS  Google Scholar 

  58. Pederson MR, Bernstein N, Kortus J (2002) Phys Rev Lett 89

    Google Scholar 

  59. Kortus J, Baruah T, Bernstein N, Pederson MR (2002) Phys Rev B 66

    Google Scholar 

  60. Kortus J, Pederson MR, Hellberg CS, Khanna SN (2001) Eur Phys J D 16:177

    Article  CAS  Google Scholar 

  61. Baruah T, Kortus J, Pederson MR, Wesolowski R, Haraldsen JT, Musfeldt JL, North JM, Zipse D, Dalal NS (2004) Phys Rev B 70

    Google Scholar 

  62. Pederson MR, Kortus J, Khanna SN (2002) J Appl Phys 91:7149

    Article  CAS  Google Scholar 

  63. Park K, Pederson MR, Richardson SL, Aliaga-Alcalde N, Christou G (2003) Phys Rev B 68

    Google Scholar 

  64. Baruah T, Pederson MR (2002) Chem Phys Lett 360:144

    Article  CAS  Google Scholar 

  65. Piligkos S, Rajaraman G, Soler M, Kirchner N, van Slageren J, Bircher R, Parsons S, Gudel HU, Kortus J, Wernsdorfer W, Christou G, Brechin EK (2005) J Am Chem Soc 127:5572

    Article  CAS  Google Scholar 

  66. Baruah T, Pederson MR (2002) Chem Phys Lett 360:144

    Article  CAS  Google Scholar 

  67. Kortus J, Pederson MR, Baruah T, Bernstein N, Hellberg CS (1871) Polyhedron 2003:22

    Google Scholar 

  68. Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer AIC, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H (2003) Science 300:1130

    Google Scholar 

  69. Xiao RJ, Fritsch D, Kuz’min M D, Koepernik K, Eschrig H, Richter M, Vietze K, Seifert G (2009) Phys Rev Lett 103

    Google Scholar 

  70. Fritsch D, Koepernik K, Richter M, ESchrig H (2008) J Comput Chemis 29:2210

    Google Scholar 

  71. Strandberg TO, Canali CM, MacDonald AH (2008) Phys Rev B 77

    Google Scholar 

  72. Garcia-FuenteA, Vega A, Aguilera-Granja F, Gallego L (2009) J Phys Rev B 79

    Google Scholar 

  73. Garcia-Fuente A, Garcia-Suarez VM, Ferrer J, Vega A (2012) Phys Rev B 85

    Google Scholar 

  74. Moses MJ, Eichhorn B, Fettinger J (2003) Abstracts Papers Am Chem Soc 225:U85

    Google Scholar 

  75. Baruah T, Zope RR, Richardson SL, Pederson MR (2004) J Chem Phys 121:11007

    Article  CAS  Google Scholar 

  76. Baruah T, Zope RR, Richardson SL, Pederson MR (2003) Phys Rev B 68

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by DOE Basic Energy Sciences. This work was partially supported by the DOE Basic Energy Science under award numbers DE-SC0006818, and DE-SC0002168 and the NSF PREM program between UCSB and UTEP (DMR-1205302). The authors thank the Texas Advanced Computing Center (TACC) from the National Science Foundation (NSF) (Grant no. TG-DMR090071) and NERSC for the computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra R. Zope .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hoque, N.M.R., Baruah, T., Ulises Reveles, J., Zope, R.R. (2017). Magnetic Anisotropy Energy of Transition Metal Alloy Clusters. In: Nguyen, M., Kiran, B. (eds) Clusters. Challenges and Advances in Computational Chemistry and Physics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48918-6_8

Download citation

Publish with us

Policies and ethics