Skip to main content

Submersion Kinetics of Ionized Impurities into Helium Droplets by Ring-Polymer Molecular Dynamics Simulations

  • Chapter
  • First Online:
Book cover Clusters

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 23))

  • 976 Accesses

Abstract

Alkali dopants interact with helium droplets very differently depending on their size and ionization state, leading to non-wetting behavior for small neutral impurities or to more homogeneous embedding in the case of ionized or large neutral systems. In the present contribution we examine by means of atomistic computer modeling the equilibrium state and out-of-equilibrium submersion kinetics of sodium atoms and dimers in helium clusters containing between 55 and 560 atoms in the normal fluid state, after ionization typically produced by appropriate laser excitation. Our modeling relies on the path-integral molecular dynamics framework, using simple but realistic pair potentials to describe all interactions. Ring-polymer molecular dynamics trajectories shed light onto the various stages of the submersion process, namely initial shell formation around the impurity followed by the slower sinking of this ‘snowball’ to the droplet center and accompanied by the evaporation of several helium atoms in the process. Characteristic times are evaluated as a function of impurity and cluster sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyal S, Schutt DL, Scoles G (1992) Phys Rev Lett 69:933

    Article  CAS  Google Scholar 

  2. Kwon Y, Huang P, Patel MV, Blume D, Whaley KB (2000) J Chem Phys 113:6469

    Article  CAS  Google Scholar 

  3. Toennies JP, Vilesov AF (2004) Angew Chem Int Ed 43:2522

    Article  Google Scholar 

  4. Barranco M, Guardiola R, Hernández S, Mayol R, Navarro J, Pi M (2006) J Low Temp Phys 142:1

    Google Scholar 

  5. Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM, Merrit JM, Stiles PL, Miller RE (2006) Int Rev Phys Chem 25:15

    Article  CAS  Google Scholar 

  6. Tiggesbäumker J, Stienkemeier F (2007) Phys Chem Chem Phys 9:4748

    Article  Google Scholar 

  7. Echt O, Kaiser A, Zöttl S, Mauracher A, Denifl S, Scheier P (2013) ChemPlusChem 78:910

    Article  CAS  Google Scholar 

  8. Stienkemeier F, Lehmann KK (2006) J Phys B 39:R127

    Article  CAS  Google Scholar 

  9. Hartmann M, Miller RE, Toennies JP, Vilesov A (1995) Phys Rev Lett 75:1556

    Article  Google Scholar 

  10. Bellet D, Breckenridge WH (2002) Chem Rev 102:1595

    Article  Google Scholar 

  11. Stienkemeier F, Higgins J, Callegari C, Kanorsky SI, Ernst WE, Scoles G (1996) Z Phys D: At Mol Clusters 38, 253

    Google Scholar 

  12. Reho J, Callegari C, Higgins J, Ernst WE, Lehmann KK, Scoles G (1997) Faraday Discuss 108:161

    Article  CAS  Google Scholar 

  13. Bünermann O, Droppelmann G, Hernando A, Mayol R, Stienkemeier F (2007) J Phys Chem A 111:12684

    Article  Google Scholar 

  14. Hernando A, Barranco M, Mayol R, Pi M, Ancilotto F, Bünermann O, Stienkemeier F (2010) J Low Temp Phys 158:105

    Article  CAS  Google Scholar 

  15. Nakayama A, Yamashita K (2001) J Chem Phys 114:780

    Article  CAS  Google Scholar 

  16. Hernando A, Barranco M, Pi M, Loginov E, Langlet M, Drabbels M (2012) Phys Chem Chem Phys 14:3996

    Article  CAS  Google Scholar 

  17. Pifrader A, Allard O, Auböck G, Callegari C, Ernst WE, Huber R, Ancilotto F (2010) J Chem Phys 133:164502

    Article  Google Scholar 

  18. von Vangerow J, Sieg A, Stienkemeier F, Mudrich M, Leal A, Mateo D, Fernando A, Barranco M, Pi M (2014) J Phys Chem A 118:6604

    Article  Google Scholar 

  19. Higgins J, Callegari C, Reho J, Stienkemeier F, Ernst WE, Lehmann KK, Gutowski M, Scoles G (1998) J Phys Chem A 102:4952

    Article  CAS  Google Scholar 

  20. Reho JH, Higgins J, Nooijen M, Lehmann KK, Scoles G, Gutowski M (2001) J Chem Phys 115:10265

    Article  CAS  Google Scholar 

  21. Vongehr S, Kresin VV (2003) J Chem Phys 119:11124

    Article  CAS  Google Scholar 

  22. Bünermann O, Stienkemeier F (2011) Eur Phys J D 61:645

    Article  Google Scholar 

  23. Stark C, Kresin VV (2010) Phys Rev B 81:085401

    Article  Google Scholar 

  24. An der Lan L, Bartl P, Leidlmair C, Schöbel H, Jochum R, Denifl S, Märk TD, Ellis AM, Scheier P (2011) J Chem Phys 135:044309

    Article  Google Scholar 

  25. Grandinetti F (2004) Int J Mass Spectrom 237:243

    Article  CAS  Google Scholar 

  26. Rossi M, Verona M, Galli DE, Reatto L (2004) Phys Rev B 69:212510

    Article  Google Scholar 

  27. Di Paola C, Sebastianelli F, Bodo E, Baccarelli I, Gianturco FA, Yurtsever E (2005) J Chem Theory Comput 1:1045

    Article  Google Scholar 

  28. Marinetti F, Coccia E, Bodo E, Gianturco FA, Yurtsever E, Yurtsever M, Yildirim E (2007) Theor Chem Acc 118:53

    Article  CAS  Google Scholar 

  29. Issaoui N, Abdessalem K, Ghalla H, Yaghmour SJ, Calvo F, Oujia B (2014) J Chem Phys 141:174316

    Article  Google Scholar 

  30. Galli DE, Ceperley DM, Reatto L (2011) J Phys Chem A 115:7300

    Article  CAS  Google Scholar 

  31. Atkins KR (1959) Phys Rev 116:1339

    Article  CAS  Google Scholar 

  32. An der Lan L, Bartl P, Leidlmair C, Jochum R, Denifl S, Echt O, Scheier P (2012) Chem Eur J 18:4411

    Article  CAS  Google Scholar 

  33. Lackner F, Krois G, Koch M, Ernst WE (2012) J Phys Chem Lett 3:1404

    Article  CAS  Google Scholar 

  34. Reho J, Higgins J, Lehmann KK, Scoles G (2000) J Chem Phys 113:9694

    Article  CAS  Google Scholar 

  35. Pacheco AB, Thorndyke B, Reyes A, Micha DA (2007) J Chem Phys 127:244504

    Article  Google Scholar 

  36. Schlesinger M, Mudrich M, Stienkemeier F, Strunz WT (2010) Chem Phys Lett 490:245

    Article  CAS  Google Scholar 

  37. Dell’Angelo D, Guillon G, Viel A (2012) J Chem Phys 136:114308

    Article  Google Scholar 

  38. Pentlehner D, Riechers R, Vdovin A, Pötzl GM, Slenczka A (2011) J Phys Chem A 115:7034

    Article  CAS  Google Scholar 

  39. Loginov E, Drabbels M (2014) J Phys Chem A 118:2738

    Article  CAS  Google Scholar 

  40. von Vangerow J, John O, Stienkemeier F, Mudrich M (2015) J Chem Phys 143:034302

    Article  Google Scholar 

  41. Sleg A, von Vangerow J, Stienkemeier F, Dulieu O, Mudrich M (2016) J Phys Chem A 120:7641

    Google Scholar 

  42. Mateo D, Hernando A, Barranco M, Loginov E, Drabbels M, Pi M (2013) Phys Chem Chem Phys 15:18388

    Article  CAS  Google Scholar 

  43. Zhang X, Drabbels M (2012) J Chem Phys 137:051102

    Article  Google Scholar 

  44. Loginov E, Rossi D, Drabbels M (2005) Phys Rev Lett 95:163401

    Article  Google Scholar 

  45. Kim JH, Peterka DS, Wang CC, Neumark DM (2006) J Chem Phys 124:214301

    Article  Google Scholar 

  46. Callicoatt BE, Mar DD, Apkarian VA, Janda KC (1996) J Chem Phys 105:7872

    Article  CAS  Google Scholar 

  47. Buchta D, Krishnan SR, Brauer NB, Drabbels M, O’Keeffe P, Devetta M, Di Fraia M, Callegari C, Richter R, Coreno M, Prince KC, Stienkemeier F, Moshammer R, Mudrich M (2013) J Phys Chem A 117:4394

    Article  CAS  Google Scholar 

  48. Lindebner F, Kautsch A, Koch M, Ernst WE (2014) Int J Mass Spectrom 365–366:255

    Article  Google Scholar 

  49. Ruchti T, Callicoatt BE, Janda KC (2000) Phys Chem Chem Phys 2:4075

    Article  CAS  Google Scholar 

  50. Bonhommeau D, Lewerenz M, Halberstadt N (2008) J Chem Phys 128:054302

    Article  CAS  Google Scholar 

  51. Franck J, Rabinowitch E (1934) Trans Faraday Soc 30:120

    Article  CAS  Google Scholar 

  52. Döppner T, Diederich T, Göde S, Przystawik A, Tiggesbäumker J, Meiwes-Broer K-H (2007) J Chem Phys 126:244513

    Article  Google Scholar 

  53. Döppner T, Fennel T, Diederich T, Tiggesbäumker J, Meiwes-Broer K-H (2005) Phys Rev Lett 94:13401

    Article  Google Scholar 

  54. Wyatt RE (1999) J Chem Phys 111:4406

    Article  CAS  Google Scholar 

  55. Leal A, Mateo D, Hernando A, Pi M, Barranco M, Ponti A, Cargnoni F, Drabbels M (2014) Phys Rev B 90:224518

    Article  Google Scholar 

  56. Theisen M, Lackner F, Ernest WE (2011) J Chem Phys 135:074306

    Article  Google Scholar 

  57. Theisen M, Lackner F, Krois G, Ernest WE (2011) J Phys Chem Lett 2:2778

    Article  CAS  Google Scholar 

  58. Craig IR, Manolopoulos DE (2004) J Chem Phys 121:3368

    Article  CAS  Google Scholar 

  59. Feynman RP, Hibbs A (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    Google Scholar 

  60. Doll JD, Coalson RD, Freeman DL (1985) Phys Rev Lett 55:1

    Article  CAS  Google Scholar 

  61. Berne BJ, Thirumalai D (1986) Annu Rev Phys Chem 37:401

    Article  CAS  Google Scholar 

  62. Cao J, Voth GA (1993) J Chem Phys 124:154103

    Google Scholar 

  63. Ceperley DM, Mitas L (1996) Adv Chem Phys 93:1

    CAS  Google Scholar 

  64. Braams BJ, Manolopoulos DE (2006) J Chem Phys 125:124105

    Article  Google Scholar 

  65. Habershon S, Fanourgakis GS, Manolopoulos DE (2009) J Chem Phys 129:074501

    Article  Google Scholar 

  66. Shiga M, Nakayama A (2008) Chem Phys Lett 451:175

    Article  CAS  Google Scholar 

  67. Calvo F, Parneix P, Van-Oanh N-T (2010) J Chem Phys 132:124308

    Article  CAS  Google Scholar 

  68. Habershon S, Markland TE, Manolopoulos DE (2009) J Chem Phys 131:024501

    Article  Google Scholar 

  69. Calvo F, Costa D (2010) J Chem Theory Comput 6:508

    Article  CAS  Google Scholar 

  70. Collepardo-Guevara R, Suleimanov YV, Manolopoulos DE (2009) J Chem Phys 130:174713

    Article  Google Scholar 

  71. Menzeleev AR, Bell F, Miller TF III (2014) J Chem Phys 140:064103

    Article  Google Scholar 

  72. Richardson JO, Althorpe SC (2009) J Chem Phys 131:214106

    Article  Google Scholar 

  73. Hele TJH, Althorpe SC (2013) J Chem Phys 138:084108

    Article  Google Scholar 

  74. Pérez A, Tuckerman ME, Müser MH (2009) J Chem Phys 130:184105

    Article  Google Scholar 

  75. Habershon S, Manolopoulos DE, Markland TE, Miller TF III (2013) Ann Rev Phys Chem 64:387

    Article  CAS  Google Scholar 

  76. Tuckerman ME, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990

    Article  CAS  Google Scholar 

  77. Engel V, Baumert T, Meier Ch, Gerber G (1993) Z Phys D At Mol Clusters 28, 37

    Google Scholar 

  78. Fredrickson WR, Watson WW (1927) Phys Rev 30:429

    Article  CAS  Google Scholar 

  79. Kubo R, Toda M, Hashitsume N (1992) Statistical physics II. Springer, Berlin

    Google Scholar 

  80. Zwanzig R (1965) Annu Rev Phys Chem 16:67

    Article  CAS  Google Scholar 

  81. McQuarrie DA (1976) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  82. Stillinger FH (1963) J Chem Phys 38:1486

    Article  CAS  Google Scholar 

  83. Kaczmarek A, Shiga M, Marx D (2009) J Phys Chem 113:1985

    Article  CAS  Google Scholar 

  84. Matsunaga N, Zavitstas AA (2004) J Chem Phys 120:5624

    Article  CAS  Google Scholar 

  85. Cerjan CJ, Docken KK, Dalgarno A (1976) Chem Phys Lett 38:401

    Article  CAS  Google Scholar 

  86. Borese van Groenou A, Poll JD, Delsing AMG, Gorter CJ (1956) Physica 22:905

    Article  Google Scholar 

  87. Yonetani Y, Kinugawa K (2003) J Chem Phys 119:9651

    Article  CAS  Google Scholar 

  88. Miura S, Okazaki S (2000) J Chem Phys 112:10116

    Article  CAS  Google Scholar 

  89. Leal A, Mateo D, Hernando A, Pi M, Barranco M (2014) Phys Chem Chem Phys 16:23206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Calvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Calvo, F. (2017). Submersion Kinetics of Ionized Impurities into Helium Droplets by Ring-Polymer Molecular Dynamics Simulations. In: Nguyen, M., Kiran, B. (eds) Clusters. Challenges and Advances in Computational Chemistry and Physics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48918-6_4

Download citation

Publish with us

Policies and ethics