Skip to main content

Sparse Subspace Clustering via Closure Subgraph Based on Directed Graph

  • Conference paper
  • First Online:
Book cover Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

Abstract

Sparse subspace clustering has attracted much attention in the fields of signal processing, image processing, computer vision, and pattern recognition. We propose an algorithm, sparse subspace clustering via closure subgraph (SSC-CG) based on directed graph, to accomplish subspace clustering without the number of subspaces as prior information. In SSC-CG, we use a directed graph to express the relations in data instead of an undirected graph like most previous methods. Through finding all strongly connected components with closure property, we discovery all subspaces in the given dataset. Based on expressive relations, we assign data to subspaces or treat them as noise data. Experiments demonstrate that SSC-CG has an exciting performance in most conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vidal, R.: Subspace clustering. Signal Proces. Mag. (SPM) 28(2), 52–68 (2011)

    Article  Google Scholar 

  2. Zhang, T., Szlam, A., Wang, Y., Leaman, G.: Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. (IJCV) 100(3), 217–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 32(10), 1832–1845 (2010)

    Article  Google Scholar 

  4. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 27(12), 1–15 (2005)

    Article  Google Scholar 

  5. Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006). doi:10.1007/11744085_8

    Chapter  Google Scholar 

  6. Chen, G., Lerman, G.: Spectral curvature clustering. Int. J. Comput. Vis. (IJCV) 81(3), 317–330 (2009)

    Article  Google Scholar 

  7. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory (TIT) 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory (TIT) 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elhamifar, E.: Vidal, R.: Sparse subspace clustering. In: Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  10. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  11. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  12. Patel, V.M., Nguyen, H.V., Vidal, R.: Latent space sparse subspace clustering. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  13. Patel, V.M., Nguyen, H.V., Vidal, R.: Latent space sparse and low-rank subspace clustering. IEEE J. Sel. Top. Signal Proces. 9(4), 691–701 (2015)

    Article  Google Scholar 

  14. Peng, X., Zhang, L., Yi, Z.: Scalable sparse subspace clustering. In: Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  15. Patel, V.M., Vidal, R.: Kernel sparse subspace clustering. In: International Conference on Image Processing (ICIP) (2014)

    Google Scholar 

  16. Adler, A., Elad, M., Hel-Or, Y.: Linear-time subspace clustering via bipartite graph modeling. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS). 26(10), 2234–2246 (2015)

    Article  MathSciNet  Google Scholar 

  17. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 209, 237–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory (TIT) 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, R., Zhang, Y., Sun, Z., Yin, Q.: Robust subspace clustering with complex noise. IEEE Trans. Image Process. (TIP) 24(11), 4001–4013 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (nos. 71271211, 71531012), Natural Science Foundation of Beijing (no. 4132067), Natural Science Foundation of Renmin University (no. 10XN1029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ma, Y., Liang, X. (2016). Sparse Subspace Clustering via Closure Subgraph Based on Directed Graph. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics