Skip to main content

Genome Sequencing, Transcriptomics, and Proteomics

  • Chapter
  • First Online:
Book cover The Olive Tree Genome

Abstract

This review encompasses the current status of major areas of progress in olive tree genome sequencing, including insights into genome function derived from large-scale gene expressing profiling, and studies on genomic architecture of repetitive sequences, smaller RNA, and proteomics. Olive tree genomics, as well as other omics, is progressing owing to recent developments in next-generation sequencing (NGS) technologies. Biological insights, therefore, are not only resulted from the sequencing initiative, since from genetic mapping, gene expression profiling, gene discovery research, and proteomics over nearly last seven years a large amount of information has been provided by different laboratories. The availability of high-quality genome assembly provides olive biologists with valuable new tools to improve and develop new varieties more efficiently, enabling the implementation of marker-assisted selection and genomic selection, and contributing to the comprehension of the molecular determinants of key traits peculiar to the species of olive tree and giving important clues concerning the evolution of its complex genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399

    Article  Google Scholar 

  • Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L et al (2016) Transcript analysis and regulative events during flower development in olive (Olea europaea L.). PLoS ONE 11(4):e0152943

    Article  PubMed  PubMed Central  Google Scholar 

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M et al (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6(4):776–791

    Google Scholar 

  • Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S et al (2015) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22:91–100

    Article  CAS  PubMed  Google Scholar 

  • Bartolini G, Prevost G, Messeri C (1994) Olive tree germplasm: descriptor lists of cultivated varieties in the world. Acta Hortic 365:116–118

    Article  Google Scholar 

  • Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D et al (2012) Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS ONE 7:e42931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazakos C, Manioudaki ME, Sarropoulou E, Spano T, Kalaitzis P (2015) 454 pyrosequencing of olive (Olea europaea L.) transcriptome in response to salinity. PLoS ONE 10:e0143000

    Article  PubMed  PubMed Central  Google Scholar 

  • Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biology 11:80

    Google Scholar 

  • Ben Sadok I, Celton JM, Essalouh L, El Aabidine AZ, Garcia G et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8:e62831

    Article  CAS  PubMed  Google Scholar 

  • Bianco L, Alagna F, Baldoni L, Finnie C, Svensson B et al (2013) Proteome regulation during Olea europaea fruit development. PLoS ONE 8:e53563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S et al (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195

    Article  CAS  PubMed  Google Scholar 

  • Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M et al (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155:185–208

    Article  CAS  PubMed  Google Scholar 

  • Bouranis DL, Kitsaki CK, Chorianopoulou SN, Aivalakis G, Drossopoulos JB (1999) Nutritional dynamics of olive tree flowers. J Plant Nutr 22:245–257

    Article  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  • Buti M, Giordani T, Cattonaro F, Cossu RM, Pistelli L et al (2011) Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. Theor Appl Genet 123:779–791

    Article  CAS  PubMed  Google Scholar 

  • Carmona RM, Zafra A, Seoane P, Castro AJ, Guerrero-Fernández D et al (2015) ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front Plant Sci 6:625

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavallotti A, Regina TMR, Quagliariello C (2003) New sources 898 of cytoplasmic diversity in the Italian population of Olea europaea L. as revealed by RFLP analysis of mitochondrial DNA: characterization of the cox3 locus and possible relationship with cytoplasmic male sterility. Plant Sci 164:241–252

    Article  CAS  Google Scholar 

  • Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999

    Article  CAS  PubMed  Google Scholar 

  • Conde C, Delrot S, Geros H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. Plant Physiol 165:1545–1562

    Article  CAS  Google Scholar 

  • Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L et al (2002) Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet 104:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M et al (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaire L, Pedrola L, de la Rosa R, Llave C (2011) High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLOS One 6(11):e27916

    Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Duque AS, De Almeida AM, Da Silva AB, Da Silva JM, Farinha AP et al (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and application in agriculture. InTech Publisher, Rijeka, Croatia, pp 49–101

    Google Scholar 

  • Faino L, Thomma BPHJ (2014) Get your high-quality low-cost genome sequence. Trends Plant Sci 19:288–291

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Escobar R, Ortiz-Urquiza A, Prado M, Rapoport HF (2008) Nitrogen status influence on olive tree flower quality and ovule longevity. Environ Exp Bot 64:113–119

    Article  Google Scholar 

  • Fishman L, Willis JH, Wu CA, Lee Y-W (2014) Comparative linkage maps suggest that fission, not polyploidy, underlies near-doubling of chromosome number within monkey flowers (Mimulus; Phrymaceae). Heredity 112:562–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemayel R, Cho J, Boeynaems S, Verstrepen KJ (2012) Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3:461–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghaffari R, Cannon EK, Kanizay LB, Lawrence CJ, Dawe RK (2013) Maize chromosomal knobs are located in gene-dense areas and suppress local recombination. Chromosoma 122:67–75

    Article  CAS  PubMed  Google Scholar 

  • Gil-Amado JA, Gomez-Jimenez MC (2012) Regulation of polyamine metabolism and biosynthetic gene expression during olive MFA. Planta 235:1221–1237

    Google Scholar 

  • Gil-Amado JA, Gomez-Jimenez MC (2013) Transcriptome analysis of mature fruit abscission control in olive. Plant Cell Physiol 54:244–269

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Jimenez MC, Paredes MA, Gallardo M, Sanchez-Calle IM (2010) Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone. J Plant Physiol 167(1):432–441

    Google Scholar 

  • González-Carranza ZH, Shahid AA, Zhang L, Liu Y, Ninsuwan U et al (2012) A novel approach to dissect the abscission process in Arabidopsis. Plant Physiol 160(3):1342–1356

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Guerra D, Lamontanara A, Bagnaresi P, Orrù L, Rizza F et al (2015) Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Genet Genomes 11:113

    Google Scholar 

  • He J, Zhao X, Laroche A, Lu Z-X, Liu H-K et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang L, He S, Huang M, Tan J et al (2012) Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant, Cell Environ 35:2130–2142

    Article  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Iaria DL, Chiappetta A, Muzzalupo I (2016) A De novo transcriptomic approach to identify flavonoids and anthocyanins “Switch-Off” in olive (Olea europaea L.) drupes at different stages of maturation. Front. Plant Sci 6:1246

    Google Scholar 

  • İpek A, Yilmaz K, Sikici P, Tangu NA, Öz AT et al (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Genet 54(3):313–325

    Article  PubMed  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Iwano M, Takayama S (2012) Self/non-self-discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83

    Article  PubMed  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P (1998) Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome 41:527–534

    Article  CAS  PubMed  Google Scholar 

  • Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F et al (2013) SNP Discovery by Illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish Olive Genotypes revealed by AFLP, SSR and SNP markers. PLOS One 8(9):e73674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bennetzen JB (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lavee S, Rallo L, Rapoport HF, Troncoso A (1999) The floral biology of the olive—II. The effect of inflorescence load and distribution per shoot on fruit set and load. Sci Hortic 82:181–192

    Article  Google Scholar 

  • Leyva-Pérez Mde L, Valverde-Corredor A, Valderrama R, Jiménez-Ruiz J, Muñoz-Merida A et al (2015) Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res 22:1–11

    Article  PubMed  Google Scholar 

  • Lorite P, Garcia MF, Carrillo JA, Palomeque T (2001) A new repetitive DNA sequence family in the olive (Olea europaea L.). Hereditas 134:73–78

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54(1):21–25

    Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. P Natl Acad Sci-Biol 101:12404–12410

    Article  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Google Scholar 

  • Marchese A, Marra FP, Caruso T, Mhelembe K, Costa F et al (2016) The first high-density sequence characterized SNP-based linkage map of olive (Olea europaea L. subsp. europaea) developed using genotyping by sequencing. Aust. J Crop Sci 10(6):857–863

    Google Scholar 

  • Mariotti R, Cultrera NGM, Muñoz Diez C, Baldini L, Rubini A (2010) Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biology 10:211

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG (2000) The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in-situ hybridization of highly repeated DNA sequences. Chromosome Res 8:615–619

    Article  CAS  PubMed  Google Scholar 

  • Mollet JC, Park SY, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muleo R, Morgante M, Velasco R, Cavallini A, Perrotta G, Baldoni L (2012) Olive tree genomic. In: Mazzalupo I (ed) Olive germplasm. The olive cultivation, table and olive oil industry in Italy. InTech Publisher, Rijeka, Croatia, pp 133–148

    Google Scholar 

  • Muñoz-Merida A, Gonzalez-Plaza JJ, Canada A, Blanco AM, Garcia-Lopez Mdel C et al (2013) De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res 20:93–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Natali L, Giordani T, Buti M, Cavallini A (2007) Isolation of Ty1-Copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breed 19:255–265

    Article  CAS  Google Scholar 

  • Natali L, Cossu RM, Barghini E, Giordani T, Buti M et al (2013) The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genom 14:686

    Article  CAS  Google Scholar 

  • Nath P, Sane AP, Trivedi PK, Sane VA, Asif MH (2007) Role of transcription factors in regulating ripening, senescence and organ abscission in plants. Stewart Postharvest Rev 3:1–14

    Article  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V et al (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  • Parra R, Paredes MA, Sanchez-Calle IM, Gomez-Jimenez MC (2013) Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation. BMC Genom 14:866

    Article  Google Scholar 

  • Parra-Lobato MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot 61:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Rapoport HF, Hammami SBM, Martins P, Pérez-Priego O, Orgaz F (2012) Influence of water deficits at different times during olive tree inflorescence and flower development. Environ Exp Bot 77:227–233

    Article  Google Scholar 

  • Reale L, Sgromo C, Ederli L, Pasqualini S, Orlandi F et al (2009) Morphological and cytological development and starch accumulation in hermaphrodite and staminate flowers of olive (Olea europaea L.). Sex Plant Reprod 22:109–119

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ1, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Google Scholar 

  • Rosati A, Caporali S, Paoletti A, Famiani F (2011) Pistil abortion is related to ovary mass in olive (Olea europaea L.). Sci Hortic-Amsterdam 127:515–519

    Article  Google Scholar 

  • San Miguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–52 (Erratum in: Science. 2007 Feb 9;315(5813):766)

    Google Scholar 

  • Small KS, Brudno M, Hill MM, Sidow A (2007) Extreme genomic variation in a natural population. P Natl Acad Sci-Biol 104(13):5698–5703

    Article  CAS  Google Scholar 

  • Song C, Fang J, Li X, Liu H, Thomas Chao C (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC et al (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J 72:142–153

    Article  CAS  PubMed  Google Scholar 

  • Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M (2002) Genomic and chromosomal organization of Ty1-Copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeesvaran G (2012) Functions of miRNA in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan K, Varala K, Hudson ME (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genom 8:132

    Article  Google Scholar 

  • Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Turktas M, Dorado G, Hernandez P, Van de Peer Y (2016) De novo whole genome sequencing of olive tree (Olea europaea L.). In: Abstract of the XXIV international plant & animal genome, San Diego, 8–13 Jan 2016, P1164

    Google Scholar 

  • van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort Res 1:14022

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genomics 13:276–295

    Article  PubMed  Google Scholar 

  • Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T (2013) Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol 13:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 4:401

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by Project MIPAF “OLEA—Genomica e Miglioramento genetico dell’olivo,” D.M. 27011/7643/10. We thank the Roche Diagnostic Spa, Applied Science to support the OLEA Italian Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Muleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Muleo, R. et al. (2016). Genome Sequencing, Transcriptomics, and Proteomics. In: Rugini, E., Baldoni, L., Muleo, R., Sebastiani, L. (eds) The Olive Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-48887-5_9

Download citation

Publish with us

Policies and ethics