Advertisement

Genetic Mapping and Detection of Quantitative Trait Loci

  • Luciana BaldoniEmail author
  • Bouchaib Khadari
  • Raul De La Rosa
Chapter
  • 761 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Olive tree is a long-living woody species with similar genomic and phenotypic constraints to other perennial fruit crops. However, compared to apple, grape, and peach, genomic investigations for designing innovative breeding strategies are still limited to only preliminary research in this species. In this chapter, we aim to describe the studies on genetic mapping and underline the most promising investigations and initiatives to build a Mediterranean network suitable for establishing robust marker-trait associations through QTL mapping and association studies. These tools should serve to finally implement new breeding programs driven by marker-assisted breeding.

Keywords

Genetic mapping Cross-progeny QTL GWAS 

References

  1. Ates D (2016) Identification of QTLs controlling genes of ripening time, flesh detachment from stone and firmness in olive (Olea europaea L.). In: XXIV plant and animal genome conference, San Diego, CA, P1163Google Scholar
  2. Atienza SG, De la Rosa R, Leon L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:725–737Google Scholar
  3. Badenes ML, Byrne DH (eds) (2011) Fruit Breeding, vol 8. Springer Science + Business Media, New York, USAGoogle Scholar
  4. Ben Sadok I, Celton JM, Essalouh L et al (2013a) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8(5):e62831CrossRefPubMedGoogle Scholar
  5. Ben Sadok I, Moutier N, Garcia G et al (2013b) Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny evidence of tree ontogeny effect. Tree Genet Genomes 9:205–221CrossRefGoogle Scholar
  6. Bink MCAM, Jansen J, Madduri M et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090Google Scholar
  7. Cappellin L, Farneti B, Di Guardo M et al (2015) QTL analysis coupled with PTR-ToF-MS and candidate gene-based association mapping validate the role of Md-AAT1 as a major gene in the control of flavor in apple fruit. Plant Mol Biol Rep 33(2):239–252CrossRefGoogle Scholar
  8. Chen W, Gao Y, Xie W et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46(7):714–721CrossRefPubMedGoogle Scholar
  9. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans Roy Soc B 363(1491):557–572CrossRefGoogle Scholar
  10. Cruz F, Julca I, Gómez-Garrido J et al (2016) Genome sequence of the olive tree. Olea europaea. GigaSci 5:29CrossRefGoogle Scholar
  11. De la Rosa R, Angiolillo A, Guerrero C et al (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106(7):1273–1282CrossRefPubMedGoogle Scholar
  12. Di Gaspero G, Cattonaro F (2010) Application of genomics to grapevine improvement. Austr J Grape Wine Res 16(s1):122–130CrossRefGoogle Scholar
  13. Dirlewanger E, Graziano E, Joobeur T et al (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101(26):9891–9896CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dominguez-Garcia MC, Belaj A, De la Rosa R et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60CrossRefGoogle Scholar
  15. Doucleff M, Jin Y, Gao F et al (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109(6):1178–1187CrossRefPubMedGoogle Scholar
  16. Edge-Garza DA, Luby JJ, Peace C (2015) Decision support for cost-efficient and logistically feasible marker-assisted seedling selection in fruit breeding. Mol Breed 35(12):1–5CrossRefGoogle Scholar
  17. El Aabidine AZ, Charafi J, Grout C et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302CrossRefGoogle Scholar
  18. Emanuelli F, Battilana J, Costantini L et al (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:1 Google Scholar
  19. Essalouh L, El Aabidine AZ, Contreras S et al (2014) Genomic and EST microsatellite loci development and use in olive: molecular tools for genetic mapping and association studies. Acta Hortic 1057:543–550CrossRefGoogle Scholar
  20. Fernández-Martinez J, Phillips J, Sekedat MD et al (2012) Structure-function mapping of a heptameric module in the nuclear pore complex. J Cell Biol 196(4):419–434CrossRefPubMedPubMedCentralGoogle Scholar
  21. González-Plaza JJ, Hulak N (2016) Olive tree in the genomic era: focus on plant architecture. Agric Consp Sci 80(4):239–246Google Scholar
  22. González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A et al (2016) Transcriptomic analysis using olive varieties and breeding progenies identifies candidate genes involved in plant architecture. Front Plant Sci 7:240CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137(4):1121–1137PubMedPubMedCentralGoogle Scholar
  24. Hammami SB, León L, Rapoport HF et al (2011) Early growth habit and vigour parameters in olive seedlings. Sci Hortic 129(4):761–768CrossRefGoogle Scholar
  25. Ignatov A, Bodishevskaya A (2011) Malus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol Temperate., FruitsSpringer, Berlin, Heidelberg, pp 45–64CrossRefGoogle Scholar
  26. Ipek A, Yilmaz K, Sikici P et al (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Genet 54:313–325CrossRefPubMedGoogle Scholar
  27. Iwata H, Hayashi T, Terakami S et al (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63(1):125–140CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaya HB, Cetin O, Kaya HS et al (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Genet 54:506–533CrossRefPubMedGoogle Scholar
  29. Khadari B, El Aabidine AZ, Grout C et al (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135(6):548–555Google Scholar
  30. Khadari B, El Bakkali A, El Aabidine A, Essalouh L, Contreras S, Ben Sadok I, Costes E, Moukhli A (2014) How can we efficiently characterize genes of agronomic interest in olive: towards the genetic association studies? Acta Hortic 1057:551–558CrossRefGoogle Scholar
  31. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63(11):4045–4060CrossRefPubMedGoogle Scholar
  32. Leon L, Rallo L, Del Rio C, Martin LM et al (2004) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123(1):73–78CrossRefGoogle Scholar
  33. Leon L, Arias-Calderon R, De la Rosa R et al (2016) Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphytica 207(3):675–684CrossRefGoogle Scholar
  34. Li Y, Huang Y, Bergelson J et al (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(49):21199–21204CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report 78–79Google Scholar
  36. Mahanil S, Ramming D, Cadle-Davidson M et al (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124(1):23–33Google Scholar
  37. Marchese A, Marra FP, Caruso T et al (2016) The first high-density sequence characterized SNP-based linkage map of olive (Olea europaea L. subsp. europaea) developed using genotyping by sequencing. Austr. J Crop Sci 10(6):857–863Google Scholar
  38. Martínez-García PJ, Parfitt DE, Ogundiwin EA et al (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36Google Scholar
  39. Montanari S, Saeed M, Knäbel M et al (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022Google Scholar
  40. Muranty H, Troggio M, Ben Sadok I et al (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 2:15060CrossRefPubMedPubMedCentralGoogle Scholar
  41. Myles S, Peiffer J, Brown PJ et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sauvage C, Segura V, Bauchet G et al (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165(3):1120–1132CrossRefPubMedPubMedCentralGoogle Scholar
  43. Serra O, Donoso JM, Picañol R et al (2016) Marker-assisted introgression (MAI) of almond genes into the peach background: a fast method to mine and integrate novel variation from exotic sources in long intergeneration species. Tree Genet Genomes 12(5):96Google Scholar
  44. Sun R, Chang Y, Yang F et al (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genom 16(1):1CrossRefGoogle Scholar
  45. Unver T, Dorado G, Hernandez P et al (2016) Lessons from whole genome sequencing of olive tree (Olea europaea L.). In: XXIV plant and animal genome conference, W371, San Diego, CAGoogle Scholar
  46. Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Luciana Baldoni
    • 1
    Email author
  • Bouchaib Khadari
    • 2
  • Raul De La Rosa
    • 3
  1. 1.CNRInstitute of Biosciences and BioresourcesPerugiaItaly
  2. 2.INRAUMR 1334 Amelioration Genetique et Adaptation des Plantes Mediterraneennes et Tropicales (AGAP)MontpellierFrance
  3. 3.IFAPACentro “Alameda del Obispo”CórdobaSpain

Personalised recommendations