Skip to main content

Olive Breeding with Classical and Modern Approaches

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Olive breeding aims to the adoption of a fast-track breeding methodology to rapidly identify and select ortets within the available gene pool or in progenies from planned mating design for the development of new varieties that meet the current objectives of the olive industry. Basic information is needed on the breeding objectives, the genetic basis of the desired traits, the selection criteria to be adopted, and the genetic diversity available for trait enhancement and new varieties needed by the current and future olive farmers. The available genetic diversity is not yet well organized according to the gene pool concept that greatly facilitates the choice of breeding materials and breeding procedure to adopt. In addition, despite recent significant efforts, the progress of knowledge on single-locus traits and QTLs is still limited, placing the efficiency of olive breeding at a crossroad. To overcome this important limiting factor, the current selection activities could be merged with the biotechnological advancements to formulate a faster trait-enhancement procedure based on cloning and genotyping of immature embryos from planned mating designs. Developments in DNA sequencing will now allow a cost-efficient increase of genomic resources for driving the rapid acquisition of information on genes for important economical and agronomical olive traits. The in vitro germination of immature zygotic embryos, zygotic embryo cloning, and application of modern genomic resources will set the stage for an accelerated olive breeding procedure.

Keywords

  • Cross-breeding
  • Gene pool
  • Olea species
  • Biotechnology
  • Gene transformation
  • Juvenility reduction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48887-5_10
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48887-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

References

  • Abdelhamid S, Grati-Kamoun N, Marra F, Caruso T (2013) Genetic similarity among Tunisian cultivated olive estimated through SSR markers. Sci Agr 70(1):33–38

    Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10(1471):399

    CrossRef  CAS  Google Scholar 

  • Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P et al (2016) Transcript analysis and regulative events during flower development in olive (Olea europaea L). PLoS ONE 11(4): e0152943. doi:10.1371/journal.pone.0152943

    Google Scholar 

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Global Change Biol 19(6):1645–1661

    Google Scholar 

  • Alruqaie IM, Al Ghamidi FA, AbuHaimed HA (2013) Determination of essential fatty acids in popular olive varieties grown in Saudi Arabia. Biotechnology 12:155–162

    CrossRef  Google Scholar 

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98(3–4):411–421

    CAS  CrossRef  Google Scholar 

  • Aranda S, Montes Borrego M, Jiménez Díaz RM, Landa BB (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. ssp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 343:329–345

    CAS  CrossRef  Google Scholar 

  • Arrillaga I, Victoria L, Segura J (1992) Micropropagation of juvenile and adult flowering ash. J Am Soc Hortic Sci 117(2):346–350

    CAS  Google Scholar 

  • Arsel H, Cirik N (1994) A general overview of olive breeding in Turkey. Olivae 52:25–27

    Google Scholar 

  • Ates D (2016) Identification of QTLs controlling genes of ripening time, flesh detachment from stone and firmness in olive (Olea europaea L.). In: XXIV plant and animal genome conference, San Diego, CA, USA, P1163

    Google Scholar 

  • Atienza SG, De La Rosa R, León L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34(2):725–737

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Baldoni L (2014) Genomics in olive: applications and perspectives. Acta Hortic 1057:483–486

    CrossRef  Google Scholar 

  • Baldoni L, Belaj A (2009) Oil crops: olive. In: Vollmann J, Rajcan I (eds) Handbook of plant breeding. Springer, New York, pp 397–421

    Google Scholar 

  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central mediterranean basin. Ann Bot 98:935–942

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Cavallini A (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6(4):76–791

    Google Scholar 

  • Barone E, La Mantia M, Marchese A, Marra FP (2014) Improvement in yield and fruit size and quality of the main Italian table olive cultivar Nocellara del Belice. Sci Agri 71:52–57

    CrossRef  Google Scholar 

  • Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en andalucía. Min de Agricultura, Junta de Andalucía, Madrid

    Google Scholar 

  • Bartolini S, Andreini L, Guerriero R, Gentili M (2006) Improvement of the quality of table olives in Tuscany through cross-breeding and selection: preliminary results of Leccino x Konservolia hybrids. In: Proceedings of the Second International Seminar Olivebioteq, vol 1, Nov 5–10, Mazara del Vallo, Marsala, Italy, pp 143–146

    Google Scholar 

  • Bartolozzi F, Mencuccini M, Fontanazza G (2001) Enhancement of frost tolerance in olive shoots in vitro by cold acclimation and sucrose increase in the culture medium. Plant Cell Tiss Org 67:299–302

    CrossRef  Google Scholar 

  • Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P (2012) Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS ONE 7(8):e42931

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Belaj A, Trujillo I, Rallo L (2000) RAPD’s analysis support the autochthon origin of olive cultivars. Acta Hortic 586:83–86

    Google Scholar 

  • Belaj A, Trujillo I, De la Rosa R, Rallo L, Giménez MJ (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126(1):64–71

    CAS  Google Scholar 

  • Belaj A, Munoz-Díez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hort 124:323–330

    CAS  CrossRef  Google Scholar 

  • Bellini E, Giordani E, Parlati MV (2002a) Three new olive cultivars obtained by cross-breeding. Acta Hortic 586:221–223

    Google Scholar 

  • Bellini E, Giordani E, Parlati MV, Pandolfi S (2002b) Olive genetic improvement: thirty years of research. Acta Hortic 586:105–108

    CrossRef  Google Scholar 

  • Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hort Sci 22:73–86

    Google Scholar 

  • Ben Sadok I, Moutier N, Garcia G et al (2013) Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny evidence of tree ontogeny effect. Tree Genet Genomes 9:205–221

    CrossRef  Google Scholar 

  • Benelli C, De Carlo A, Lambardi M, Lynch PT (2001) Vitrification of shoot tips, nodal segments and embryogenic tissue of olive (Olea europaea L.) for germplasm cryopreservation. Acta Hortic 560:137–140

    CAS  CrossRef  Google Scholar 

  • Benelli C, De Carlo A, Englmen F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185

    CAS  PubMed  CrossRef  Google Scholar 

  • Berenguer AS (1978) U.S. Patent No. 4,117,874. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Besnard G, Bervillé A (2000) Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. CR Acad Sci III-Vie 323(2):173–181

    Google Scholar 

  • Besnard G, Khadari B, Villemur P, Bervillé A (2000) Cytoplasmic male sterility in the olive (Olea europaea L.). Theor Appl Genet 100:1018–1024

    CrossRef  Google Scholar 

  • Besnard G, Baradat P, Chevalier D, Tagmount A, Bervillé A (2001) Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genetic Resour Crop Evol 48(2):165–182

    CrossRef  Google Scholar 

  • Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101(1):25–30

    CAS  PubMed  CrossRef  Google Scholar 

  • Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Bot Gallica 159(3):319–328

    CrossRef  Google Scholar 

  • Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, Baali-Cherif D, Brunini-Bronzini de Caraffa V, Santoni S, Vargas P, Savolainen V (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280(1756):20122833

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S, Avidan B, Ben-Ari G (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131(6):767–774

    CAS  CrossRef  Google Scholar 

  • Biton I, Doron-Faigenboim A, Jamwal M, Mani Y, Eshed R, Rosen A, Sherman A, Ophir R, Lavee S, Avidan B, Ben-Ari G (2015) Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Molecular Breeding 35(4):1–14

    Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195

    CAS  PubMed  CrossRef  Google Scholar 

  • Bracci T, Sebastiani L, Busconi M, Fogher C, Belaj A, Trujillo I (2009) SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci Hortic 122(2):209–215

    CAS  CrossRef  Google Scholar 

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462

    CAS  PubMed  CrossRef  Google Scholar 

  • Breton CM, Berville A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. CR Biol 335:563–572

    CAS  CrossRef  Google Scholar 

  • Breton C, Farinelli D, Shafiq S, Heslop-Harrison J, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10:1055–1067

    CrossRef  Google Scholar 

  • Brooks RM, Olmo HP (eds) (1997) The Brooks and Olmo register of fruit and nut varieties, 3rd edn. ASHS Press, Alexandria

    Google Scholar 

  • Bueno MA, Pintos B, Höfer M, Martin A (2005) Pro-embryos induction from Olea europaea L. isolated microspore culture. Acta Physiol Plant 27:695–701

    CrossRef  Google Scholar 

  • Buffa R, Motisi A, Cutino I, Caruso T (2006) Effect of rootstock vigour on dry matter partitioning in olive (Olea europaea L). Olivebioteq, Mazara del Vallo. Marsala 1:371–376

    Google Scholar 

  • Cáceres ME, Ceccarelli M, Pupilli F, Sarri V, Mencuccini M (2015) Obtainment of inter-sspecific hybrids in olive (Olea europaea L.). Euphytica 201(2):307–319

    CrossRef  CAS  Google Scholar 

  • Cañas LA, Wyssmann AM, Benbadis MC (1987) Isolation, culture and division of olive (Olea europaea L) protoplasts. Plant Cell Rep 5:369–371

    CrossRef  Google Scholar 

  • Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Org 103:237–242

    CAS  CrossRef  Google Scholar 

  • Caruso T, Marra FP, Costa F, Campisi G, Macaluso L, Marchese A (2014) Genetic diversity and clonal variation within the main sicilian olive cultivars based on morphological traits and microsatellite markers. Sci Hortic 180:130–138

    CAS  CrossRef  Google Scholar 

  • Cavallotti A, Regina TMR, Quagliariello C (2003) New sources of cytoplasmic diversity in the Italian population of Olea europaea L. as revealed by RFLP analysis of mitochondrial DNA: characterization of the cox3 locus and possible relationship with cytoplasmic male sterility. Plant Sci 164:241–252

    CAS  CrossRef  Google Scholar 

  • Chaari-Rkhis A, Maalej M, Messaoud SO, Drira N (2006) In vitro vegetative growth and flowering of olive tree in response to GA3 treatment. Afr J Biotechnol 5(22):2097–2302

    CAS  Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manage 78(1):108–121

    CrossRef  Google Scholar 

  • Chliyeh M, Touati J, Selmaoui K, Touhami AO, Filali-Maltouf A, El Modafar C, Douira A (2014) Bibliographic inventory of the olive tree (Olea europaea L.) fungal diseases in the world. Int J Pure Appl Biosci 2:46–79

    Google Scholar 

  • Ciccarese F, Ambrico A, Longo O, Schiavone D (2002) Search for resistance to Verticillium-Wilt and leaf spot in Olive. Acta Hortic 586:717–720

    CrossRef  Google Scholar 

  • Collani S, Moretto F, Galla G, Alagna F, Baldoni L, Muleo R (2010) A new hypothesis on the mechanism of self-incompatibility occurring in olive (Olea europaea L.): isolation, characterization and expression studies of slg and srk genes as candidates for a sporophytic self-incompatibility system. J Biotechnol 150:502

    CrossRef  Google Scholar 

  • Collani S, Galla G, Ramina A, Barcaccia G, Alagna F, Càceres EM, Baldoni L, Muleo R, Perrotta G (2012) Self-incompatibility in olive: a new hypothesis on the S-locus genes controlling pollen-pistil interaction. Acta Hortic 967:133–140

    CrossRef  Google Scholar 

  • Conner DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev 31:155–229

    Google Scholar 

  • Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Rao R (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12(1):1

    CrossRef  CAS  Google Scholar 

  • Costa C (2014) Evaluation and development potential of olive cultivars in South Africa. Acta Hortic 1057:525–531

    Google Scholar 

  • Cozza R, Turco D, Bati CB, Bitonti MB (1997) Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss Org 51:215–223

    CAS  CrossRef  Google Scholar 

  • Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben, M Cano E, Galán L, Frias B, Ribeca P, Derdak S, Gut M, Sánchez-Fernández M, García JL, Gut IG, Vargas P, Alioto TS, Gabaldón T (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5:29

    Google Scholar 

  • D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163

    PubMed  CrossRef  CAS  Google Scholar 

  • D’Angeli S, Gutiérrez-Pesce P, Altamura M, Biasi R, Ruggiero B, Muganu M, Bressan R, Rugini E (2001) Genetic transformation of olive tree (Olea europaea L.) with osmotin gene and in situ protein localisation in the transgenic tissues. Proceedings of the annual congress Società Italiana di Genetica Agraria (Book of Abstracts)

    Google Scholar 

  • De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106(7):1273–1282

    PubMed  CrossRef  Google Scholar 

  • Del Río C, Caballero JM, García-Fernandez MD (2005) Vigor (Banco de Germoplasma de Córdoba). In: Rallo L, Barranco D, Caballero J, Martín A, del Río C, Tous J, Trujillo I (eds) Las Variedades de Olivo Cultivadas en España (Libro II: Variabilidad y seleccion). Junta de Andalucia, MAPA and Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Di Vaio C, Marra FP, Scaglione G, La Mantia M, Caruso T (2012) The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit. Sci Hortic 134:72–78

    CrossRef  Google Scholar 

  • Diatchenko L, Lau Y, Campbell AP, Chenchik A, Moqadam F, Huang B, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. P Natl Acad Sci Biol 93(12):6025–6030

    CAS  CrossRef  Google Scholar 

  • Díaz A, Martín A, Rallo P, Barranco D, De la Rosa R (2006) Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J Am Soc Hortic Sci 131:250–255

    Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry, Part A 51A:127–128

    CrossRef  Google Scholar 

  • Dominguez-Garcia MC, Belaj A, De la Rosa R et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60

    CAS  CrossRef  Google Scholar 

  • Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7(4):e35071

    Google Scholar 

  • Donini B, Roselli G (1972) Briscola. Nuova cultivar di olivo a sviluppo compatto. Riv di Ortoflorofrutticoltura It 66:103–114

    Google Scholar 

  • El Aabidine AZ, Charafi E, Grout J et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302

    CrossRef  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Estrada-Hernández MG, Valenzuela-Soto JH, Ibarra-Laclette E, Délano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137(1):44–60

    PubMed  CrossRef  CAS  Google Scholar 

  • Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hortic Sci 120:538–542

    CAS  Google Scholar 

  • Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive Propagation Manual. CSIRO, Collingwood, Australia

    Google Scholar 

  • Fabbri A, Beghè D, Ganino T, Nisi R (2006) Anatomical root features of two olive rootstocks of different vigour, vol 1. Olivebioteq Mazara del Vallo, Marsala, pp 457–460

    Google Scholar 

  • Farinelli D, Tombesi A, Hassani D (2004) Paternal and maternal effects on seed characteristics of olive cultivars. Acta Hortic 791:121–125

    Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domentica Borkh.). Plant Breed 126:137–145

    CAS  CrossRef  Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    CAS  PubMed  CrossRef  Google Scholar 

  • Fontanazza G (1987) Presentiamo la cultivar I-77. Terra e Vita 46:10–11

    Google Scholar 

  • Fontanazza G, Bartolozzi F (1998) Olive. In: Scarascia-Mugnozza GT, Pagnotta MA (eds) Italian contribution to plant genetics and breeding. Tipolitografia Quatrini A. & F. snc, Publisher, Viterbo, pp 723–748

    Google Scholar 

  • Fontanazza G, Bartolozzi F, Vergari G (1998) Fs-17. Frutticoltura 5:61

    Google Scholar 

  • Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Garcia Berenguer A (1988) Selección clonal en Olea europaea, L. cultivar. Picual. ITEA 75:9–13

    Google Scholar 

  • Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org 86(2):131–146

    CrossRef  Google Scholar 

  • Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, Saldarelli P (2016) Transcriptome profiling of two olive cultivars in response to infection by the OQDS strain of Xylella fastidiosa ssp. pauca. BMC Genom 17(1):1

    CrossRef  Google Scholar 

  • Gómez-Lama Cabanás C (2015) Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front Microbiol 6:928

    Google Scholar 

  • González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A et al (2016) Transcriptomic analysis using olive varieties and breeding progenies identifies candidate genes involved in plant architecture. Front Plant Sci 7:240

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of the Greek olive ultivar. Chondrolia Chalkidikis. Plant Cell Tiss Org 71(1):47–54

    CAS  CrossRef  Google Scholar 

  • Guerin J, Mekuria G, Burr M, Collins G, Sedgley M (2002) Selection of improved olive cultivars. Acta Hortic 622:231–234

    Google Scholar 

  • Hannachi H, Sommerlatte H, Breton C, Msallem M, El Gazzah M, Ben El Hadj S, Berville A (2009) Oleaster (var. sylvestris) and ssp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea ssp. europaea var. europaea). Genet Resour Crop Evol 56:393–403

    CAS  CrossRef  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    CrossRef  Google Scholar 

  • Hartmann HT, Whisler JE (1970) Some rootstocks influence in the olive (Olea europaea L) var. ‘Sevillano’. J Am Soc Hortic Sci 95(6):562–565

    Google Scholar 

  • Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and inter simple sequence repeats (ISSR). Mol Ecol 9:857–868

    CAS  PubMed  CrossRef  Google Scholar 

  • Hossein AS, Hajnajari H (2006) Obtaining embryo rescued hybrid plants of olive (Mary x Roghani M.) in cross breeding for precocity induction. In: Proceedings of the second international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, 5–10 Nov, Marsala, Italy, pp 27–29

    Google Scholar 

  • Ibtissem L, Mezghani AM, Messaoud M (2014) Phenotypic diversity of some olive tree progenies issued from a Tunisian breeding program. Eur Sci J 10(6):292–313

    Google Scholar 

  • İpek A, Yılmaz K, Sıkıcı P et al (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Genet 54:313–325

    PubMed  CrossRef  CAS  Google Scholar 

  • Işik N, Doǧanlar S, Frary A (2011) Genetic diversity of Turkish olive varieties assessed by simple sequence repeat and sequence-related amplified polymorphism markers. Crop Sci 51(4):1646–1654

    CrossRef  CAS  Google Scholar 

  • Iwano M, Takayama S (2012) Self/non-self-discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83

    PubMed  CrossRef  Google Scholar 

  • Janick J, Moore JN (eds) (1996) Fruit breeding. Wiley, New York

    Google Scholar 

  • Khadari B, El Aabidine AZ, Grout C, Sadok IB, Doligez A, Moutier N, Costes E (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hort Sci 135(6):548–555

    Google Scholar 

  • Khlif M, Trigui A (1986) Observations preliminaires a une selection clonale de la variete d’olivier ‘Chemlali’. Olea 17:71–75

    Google Scholar 

  • Khlif M, Trigui A (1990) Olive cultivars investigations, preliminary results. Acta Hortic 286:65–68

    CrossRef  Google Scholar 

  • Kiew R (1979) Florae Malesianae Praecursores LX. The Oleaceae of Malesia. The genus Olea. Blumea 25(1):305–313

    Google Scholar 

  • Klepo T, De la Rosa R, Satovic Z, León L, Belaj A (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101

    CrossRef  Google Scholar 

  • Koubouris GC, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hortic 176:91–96

    CrossRef  Google Scholar 

  • Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54:663–673

    PubMed  CrossRef  Google Scholar 

  • Lambardi M, Caccavale A, Rugini E, Caricato G (1999) Histological observations on somatic embryos of olive (Olea europaea L.). Acta Hortic 474:67–70

    CrossRef  Google Scholar 

  • Lambardi M, Benelli C, De Carlo A, Fabbri A, Grassi S, Lynch PT (2000) Medium and long term in vitro conservation of olive germplasm (Olea europaea L.). Acta Hortic 586:109–112

    Google Scholar 

  • Lavee S (1978) ‘Kadesh’ table olive. HortScience 13:62–63

    Google Scholar 

  • Lavee S (1989) Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing. Acta Hortic 239:311–322

    Google Scholar 

  • Lavee S (1990) Aims, methods and advances in breeding of new olive (Olea europaea L.) cultivars. Acta Hortic 286:23–36

    CrossRef  Google Scholar 

  • Lavee S (2008) New table olive varieties intended for harvest facilitation. In Jornadas Internacionales de la Aceituna de Mesa. Dos Hermanas, Seville, Spain, March 26–27, 2008

    Google Scholar 

  • Lavee S (2013) Evaluation of the need and present potential of olive breeding indicating the nature of the available genetic resources involved. Sci Hortic 61:333–339

    CrossRef  Google Scholar 

  • Lavee S, Haskal A, Wodner M (1986) ‘Barnea’ a new olive cultivar from first breeding generation. Olea 17:95–99

    Google Scholar 

  • Lavee S, Harshemesh H, Haskal A, Meni V, Wodner M, Ogrodovich A, Avidan B, Wiesman Z, Avidan N, Trapero-Casas A (1999) ‘Maalot’ a new orchard-resistant cultivar to peacock eye leaf spot (Spilocaea oleagina Cast.). Olivae 78:51–59

    Google Scholar 

  • Lavee S, Avidan B, Meni Y (2003) Askal, a new high-performing oil variety for intensive and super-intensive olive orchard. Olivae 97:53–59

    Google Scholar 

  • Lavee S, Avidan B, Meni Y, Haskal A, Wodner M (2004) Three new semi-dwarf table olive varieties. Olivae 102:33–41

    Google Scholar 

  • Lavee S, Avidan B, Ben-Ari G (2014) Trends in breeding new olive varieties in Israel for quality and economic management. Agric Sci 5:701–709

    Google Scholar 

  • Lavee S, Singer A, Haskal A, Avidan B, Avidan N, Wonder M (2008) Diversity in performance between trees within the traditional Souri olive cultivar (Olea europea L.) in Israel under rainfed conditions. Olivae 109: 33–45

    Google Scholar 

  • Lazovic B, Adakalic M, Perovic T (2014) Clonal variability of Montenegrin olive cultivar “Zutica”. Acta Hortic 1057:501–507

    CrossRef  Google Scholar 

  • Leon L, De La Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortScience 43(2):479–502

    Google Scholar 

  • León L, Rallo L, Del Río C, Martín LM (2004) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123:73–78

    CrossRef  Google Scholar 

  • León L, Santos-Antunes AF, Martın LM, Garrido A, Rallo L (2005) Obtencion de nuevas variedades por cruzamientos. In: Rallo L, Barranco D, Caballero J, Martín A, Del Rio C, Tous J, Trujillo I (eds) Las Variedades de Olivo Cultivadas en Espana (Libro III: Mejora genética y biotecnologıa). Junta de Andalucıa, MAPA and Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Leva AR (2011) Innovative protocol for “ex vitro rooting” on olive micropropagation. Central Eur J Biol 6(3):352–358

    Google Scholar 

  • Leva AR, Petruccelli R (2007) Field performance of olive somaclones derived from somatic embryos. Acta Hortic 748:181–189

    CrossRef  Google Scholar 

  • Leva AR, Petruccelli R, Bartolini G (1994) Mannitol “in vitro” culture of Olea europaea L. (var. Maurino). Acta Hortic 356:43–46

    CrossRef  Google Scholar 

  • Leva AR, Muleo R, Petruccelli R (1995) Long-term somatic embryogenesis from immature olive cotyledons. J Hortic Sci Biotechnol 70:417–421

    Google Scholar 

  • Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166

    PubMed  CrossRef  Google Scholar 

  • Lopes T, Capelo A, Brito G, Loureiro J, Santos C (2009) Genetic variability analyses of the somatic embryogenesis induction process in Olea spp. using nuclear microsatellites. Trees Struct Funct 23(1):29–36

    Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25

    CAS  CrossRef  Google Scholar 

  • Lumaret R, Ouazzani N (2001) Ancient wild olives in Mediterranean forests. Nature 413:700

    CAS  PubMed  CrossRef  Google Scholar 

  • Lynch PT, Siddika A, Mehra A, Fabbri A, Benelli C, Lambardi M (2007) The challenge of successful cryopreservation of olive (Olea europaea L.) shoot tips. Adv Hortic Sci 21:211–214

    Google Scholar 

  • Lynch PT, Siddika A, Johnston JW, Trigwell SM, Mehra A, Benelli C (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Marchese A, Marra FP, Costa F, Quartararo A, Fretto S, Caruso T (2016) An investigation of the self-and inter-incompatibility of the olive cultivars’ Arbequina’and’Koroneiki’in the Mediterranean climate of Sicily. Austr J Crop Sci 10(1):88

    Google Scholar 

  • Mariotti R, Cultrera NG, Díez CM, Baldoni L, Rubini A (2010) Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biol 10(1):211

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Marra FP, Marchese A, Campisi G, Guzzetta G, Caruso T, Mafrica R, Pangallo S (2014) Intra-cultivar diversity in southern italy olive cultivars depicted by morphological traits and SSR markers. Acta Hortic 1057:571–576

    CrossRef  Google Scholar 

  • Martelli GP, Boscia D, Porcelli F, Saponari M (2016) The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. Eur J Plant Pathol 144:235–243

    CrossRef  Google Scholar 

  • Martin GC, Ferguson L, Sibbett GS (2005) Flowering, pollination, fruiting, alternate bearing, and abscission. In: Sibbett GS, Ferguson L, Coviello JL, Lindstrand M (eds) Olive production manual. University of California Agriculture and Natural Resources, Oakland, pp 49–54

    Google Scholar 

  • Martinez D, Arroyo-Garcia R, Revilla AM (1999) Cryopreservation of in vitro grown shoots-tips of Olea europaea var. Arbequina. CryoLetters 20:29–36

    Google Scholar 

  • Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic 159:88–95

    CrossRef  Google Scholar 

  • Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine MC, Kuszala C, Gianinazzi S (2010) Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol 9:1159–1167

    CrossRef  Google Scholar 

  • Medina E, Morales-Sillero A, Ramìrez EM, Rallo P, Brenes M, Romero C (2012) New genotypes of table olives: profile of bioactive compounds. Int J Food Sci Technol 47:2334–2341

    CAS  CrossRef  Google Scholar 

  • Mencuccini M (1991) Protoplast culture isolated from different tissues of olive (Olea europoea L.) cultivars. Physiol Plant 1991:82–14

    Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26(1):163–182

    CrossRef  Google Scholar 

  • Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissue. Plant Cell Tiss Org 32:283–288

    CAS  CrossRef  Google Scholar 

  • Miano D, Gutierrez Pesce P, Lupi R, Dradi G, Roncasaglia R, Taratufolo C et al (2004) RolABC genes are differently regulated in the organs and modify gene expression and morphology of olive cultivar Canino. In: Proceedings of the XLVIII annual meet Italian society of agricultural genetics SIFV-SIGA, Lecce, Italy

    Google Scholar 

  • Micheli M, Mencuccini M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv Hortic Sci 12:163–168

    Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. var. Moraiolo) effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292

    CrossRef  Google Scholar 

  • Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Physiol 139:269–273

    CrossRef  Google Scholar 

  • Mkize N, Hoelmer KA, Villet MH (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp. cuspidate, in the Eastern Cape of South Africa. Biocontrol Sci Technnol 18:991–1004

    CrossRef  Google Scholar 

  • Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182

    CAS  PubMed  CrossRef  Google Scholar 

  • Moral J, Díez CM, León L, De la Rosa R, Santos-Antunes F Barranco D (2013) Female genitor effect on the juvenile period of olive seedlings. Sci Hortic 156:99–105

    Google Scholar 

  • Mulas M (1999) Characterisation of olive wild ecotypes. Acta Hortic 474:121–124

    CrossRef  Google Scholar 

  • Muleo R, Morgante M, Velasco R, Cavallini A, Perrotta G, Baldoni L (2012) Olive tree genomic. In: Mazzalupo I (ed) Olive germplasm. The olive cultivation, table and olive oil industry in Italy. InTech Publisher, Rijeka, pp 133–148

    Google Scholar 

  • Muzzalupo I, Stefanizzi F, Perri E (2009) Evaluation of olives cultivated in southern Italy by simple sequence repeat markers. HortScience 44(3):582–588

    Google Scholar 

  • Nardini A, Gascò A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol 26:1137–1144

    Google Scholar 

  • Naseer MI, Ullah I, Narasimhan ML, Lee HY, Bressan RA, Yoon GH, Kim MO (2014) Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Disease 5(3):e1150

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Obaid R, Abu-Qaoud H, Arafeh R (2014) Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers. Biotechnol Biotechnol Equip 28(5):813–817

    Google Scholar 

  • Oražem P, Štajner N, Bohanec B (2013) Effect of X-ray irradiation on olive shoot culture evaluated by morphological measurements, nuclear DNA content and SSR and AFLP markers. Trees-Struct Funct 27(6):1587–1595

    Google Scholar 

  • Orinos P, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tiss Org 27:183–187

    CrossRef  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:883–887

    CrossRef  Google Scholar 

  • Oz B, Dag A, Kerem Z, Lavee S, Kadereit JW (2008) Local old olive landrace varieties in Israel-valuable plant genetic resources in olive cultivation. Isr J Plant Sci 56(3):265–271

    CrossRef  Google Scholar 

  • Ozair M, Hafiz IA, Abbasi NA, Mahmood MA, Bibi N (2014) Effect of different concentrations of Oryzalin on in vitro growth of explants of olive cv. Moraiolo. Sch J Agric Sci 4(1):51–59

    Google Scholar 

  • Padula G, Giordani E, Bellini E, Rosati A, Pandolfi S, Paoletti A, Pannelli G, Ripa V, De Rose F, Perri E, Buccoliero A, Mennone C, Buccoliero A (2008) Field evaluation of new olive (Olea europaea L.) selections and effects of genotype and environment on productivity and fruit characteristics. Adv Hortic Sci 1:87–94

    Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    PubMed  PubMed Central  Google Scholar 

  • Pannelli G (2006) Varietà e portinnesti “superintensivi”. Olivo e Olio 2:47–49

    Google Scholar 

  • Pannelli G, Famiani F, Rugini E (1992) Effects of a change in ploidy level on anatomical, cytological, reproductive and growth performance changes and polyamine contens, in mutants of gamma irradiated olive plants. Acta Hortic 317:209–218

    Google Scholar 

  • Pannelli G, Volpe D, Preziosi P, Famiani F (1993) Comparison of the vegetative and reproductive characteristics of traditional olive cultivar and selected low vigorous accessions in central Italy. Acta Hortic 356:123–126

    Google Scholar 

  • Parlati MV, Bellini E, Perri E, Pandolfi S, Giordani E, Martelli S (1994) Genetic improvement of olive: initial observations on selections made in Florence. Acta Hortic 356:87–90

    CrossRef  Google Scholar 

  • Pérez A, León L, Pascual M, Romero-Segura C, Sánchez-Ortiz A, De la Rosa R, Sanz C (2014) Variability of virgin olive oil phenolic compounds in segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE 9(3):e92898

    Google Scholar 

  • Perri E, Parlati MV, Rugini E (1994) Isolation and culture of olive (Olea europaea L.) cultivar protoplasts. Acta Hortic 356:51–53

    CrossRef  Google Scholar 

  • Pritsa TS, Voyiatzis DG, Voyiatzi CJ, Sotiriou MS (2003) Evaluation of vegetative growth traits and their relation to time to first flowering of olive seedlings. Austr J Agric Res 54:371–376

    CrossRef  Google Scholar 

  • Rallo L (1995) Selection and breeding of olive in Spain. Olivae 59:46–53

    Google Scholar 

  • Rallo L (2014a) Breeding oil and table olives for mechanical harvesting in Spain. HortTechnology 24(3):295–300

    Google Scholar 

  • Rallo L (2014b) Looking towards tomorrow in olive growing: challenges in breeding. Acta Hortic 1057:467–482

    CrossRef  Google Scholar 

  • Rosati A, Paoletti A, Caporali S, Perri E (2013) The role of tree architecture in super high density olive orchards. Sci Hortic 161:24–29

    CrossRef  Google Scholar 

  • Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of olive ‘mission’explants. Asian J Plant Sci 8(7):505

    CrossRef  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive cultivars with different root-ability and medium development using analitycal data from developing shoots and embryos. Sci Hortic 24:123–134

    CAS  CrossRef  Google Scholar 

  • Rugini E (1986) Olive. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10., SpringerBerlin, Germany, pp 253–267

    Google Scholar 

  • Rugini E (1988) Somatic embryogenesis and plant regeneration in Olive (Olea europaea L.). Plant Cell Tiss Org 14:207–214

    CrossRef  Google Scholar 

  • Rugini E (1992) Involvement of polyamines in auxin and Agrobacterium rhizogenes-induced rooting of fruit trees in vitro. Am J Hortic Sci 117:532–536

    CAS  Google Scholar 

  • Rugini E (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol II. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 171–189

    CrossRef  Google Scholar 

  • Rugini E (2015) State of the art on transgenic fruit trees and considerations on the consequences of the prohibitions imposed on research in Italy (Stato dell’arte sulle piante da frutto transgeniche e considerazioni sulle conseguenze dei divieti imposti alla ricerca in Italia). Italus Hortus 22:31–57

    Google Scholar 

  • Rugini E, Bottalico G (2011) Tecniche di risanamento. Università degli Studi di Bari, Bari, pp 51–53

    Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260

    CAS  PubMed  CrossRef  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol 10. Springer, Berlin, pp 593–641

    Google Scholar 

  • Rugini E, Jacoboni A, Bazzoffia A (1987) A simple in vitro method to avoid the initial dark period and to increase rooting in woody species. Acta Hortic 227:438–440

    Google Scholar 

  • Rugini E, Pannelli G, Ceccarelli M, Muganu M (1996) Isolation of triploid and tetraploid olive (Olea europaea L.) plants from mixoploid cv. “Frantoio” and “Leccino” mutants by in vivo and in vitro selection. Plant Breed 115:23–27

    CrossRef  Google Scholar 

  • Rugini E, Di Francesco G, Muganu M, Astolfi S, Caricato G (1997) The effect of polyamines and hydrogen peroxide in root formation in olive cuttings and in the role of polyamines as an early marker for rooting ability. In: Altman A, Waisel AE (eds) Biology of root formation and development, vol 65. Series Basic Life Sciences, Springer, Berlin, pp 65–73

    Google Scholar 

  • Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var. sativa) transformation. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publishers, Massachusetts, USA, pp 245–279

    Google Scholar 

  • Rugini E, Pannelli G, Sonnoli A, Bartolini G, De Angelis S (2003) Impiego di genotipi a sviluppo contenuto per facilitare l’impiego di macchine scavallatrici operanti in continuo per la raccolta integrale delle olive. Frutticoltura 1:57–61

    Google Scholar 

  • Rugini E, Gutierrez-Pesce P, Muleo R (2008) Olive. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic temperate fruits and nuts. Blackwell Publishing, Oxford, UK, pp 233–258

    CrossRef  Google Scholar 

  • Rugini E, Cristofori V, Silvestri C (2016a) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotechnol Adv 34:687–696

    CAS  PubMed  CrossRef  Google Scholar 

  • Rugini E, Silvestri C, Ceccarelli M, Muleo R, Cristofori V (2016b) Mutagenesis and biotechnology techniques as tools for selecting new stable diploid and tetraploid olive genotypes and their dwarfing agronomical characterization. HortScience 51(7):1–6

    Google Scholar 

  • Saida S, Chatelet P, Noureddine O et al (2005) Micropropagation of eight Moroccan and French olive cultivars. J Hortic Sci 40(1):193–196

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9(1): 30–33

    Google Scholar 

  • Sánchez-Romero C, Swennen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. Cryo Letters 5:359–372

    Google Scholar 

  • Santos-Antunes F, León L, De la Rosa R, Alvarado J, Mohedo A, Trujillo I, Rallo L (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortScience 40:1213–1215

    Google Scholar 

  • Sedgley M (2000) Wild olive selection for quality oil production. A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 00/116 RDC Project No UA-41A. https://rirdc.infoservices.com.au/items/00-116

  • Seifi E, Guerin J, Kaiser B, Sedgley M (2011) Sexual compatibility and floral biology of some olive cultivars. NZ J Crop Hortic Sci 39(2):41–151

    CrossRef  Google Scholar 

  • Selak GV, Cuevas J, Ban SG, Perica S (2014) Pollen tube performance in assessment of compatibility in olive (Olea europaea L.) cultivars. Sci Hortic 165:36–43

    CrossRef  Google Scholar 

  • Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papilla stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29:561–572

    PubMed  CrossRef  CAS  Google Scholar 

  • Sesli M, Onan E, Oden S, Yener H, Yegenoglu ED (2010) Resistance of olive cultivars to Verticillium dahliae. Sci Res Ess 5:1561–1565

    Google Scholar 

  • Shah SA, Yoon GH, Chung SS, Abid MN, KimTH Lee HY, Kim MO (2016) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiat 22:1–10

    Google Scholar 

  • Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europea L.) somatic and encapsulation-vitrification. Cryoletters 21(6):357–366

    PubMed  CAS  Google Scholar 

  • Shibli RA, Shatnawi M, Abu E, Al-Juboory H (2001) Somatic embryogenesis and plant recovery from callus of “Nabali” olive (Olea europaea L.). Sci Hortic 88:243–256

    CrossRef  Google Scholar 

  • Sofo A, Manfreda S, Fiorentino M, Dichio B, Xiloyannis C (2008) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth Syst Sci Discuss 12(1):293–301

    CrossRef  Google Scholar 

  • Strobel GA, Nachmias A, Wilford MH (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66:2581–2585

    CrossRef  Google Scholar 

  • Suarez MP, Lopez-Rivares EP, Cantero ML, Ordovas J (1990) Clonal selection on ‘Manzanilla de Sevilla’. Acta Hortic 286:117–119

    CrossRef  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2(3):195–212

    CrossRef  Google Scholar 

  • Titouh K, Khelifi L, Titouh-Hadj Moussa K, Cerezo-Medina S, Mercado JA, Pliego-Alfaro F (2014) Evaluation of the effect of phosphinothricin, as selection agent, on the growth of olive somatic embryos. Acta Hortic 1057:533–542

    CrossRef  Google Scholar 

  • Torreblanca R, Cerezo S, Palomo-Rìos E, Marcado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tiss Org 103:61–69

    CAS  CrossRef  Google Scholar 

  • Torres LE, Taborda R, Costero B, Degutis L, Teich I, Prenol LV, Conci L (2014a) Genetic relationships between olive (Olea europaea L.) cultivars and promissory genotypes in Catamarca, Argentina. Acta Hortic 1057:495–499

    CrossRef  Google Scholar 

  • Torres MR, Cornejo P, Bertoldi V, Ferrer MS, Masuelli RW (2014b) Development of a microsatellite database for identification of olive (Olea europaea L.) cultivars in Mendoza, Argentina. Acta Hortic 1057:521–524

    CrossRef  Google Scholar 

  • Toufik I, Guenoun F, Belkoura I (2014) Embryogenesis expression from somatic explants of olive (Olea europaea L.) cv Picual. Moroccan J Biol 11:17–25

    Google Scholar 

  • Tous J, Romero A, Plana J (1999) IRTA-i 18, clone della varietà di olivo Arbequina. Olivae 77:50–52

    Google Scholar 

  • Trifilò F, Lo Gullo MA, Nardini A, Pernice F, Salleo S (2007) Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees Struct Funct 21:549–556

    CrossRef  Google Scholar 

  • Trigui A (1996) Improving the quantity and quality of olive production in Tunisia: unavoidable need and outlook for olive identification and breeding. Olivae 61:34–40

    Google Scholar 

  • Troncoso A, Liñán J, Prieto J, Cantos M (1990) Influence of different olive rootstocks on growth and production of ‘Gordal Sevillana’. Acta Hortic 286:133–136

    CrossRef  Google Scholar 

  • Trujillo I, Rallo L, Arús P (1995) Identifying olive cultivars by isozyme analysis. J Am Soc Hortic Sci 120(2):318–324

    CAS  Google Scholar 

  • Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM (2014) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes 10:141–155

    CrossRef  Google Scholar 

  • Unver T,  Turktas M, Dorado G, Hernandez P  (2016) De novo whole genome sequencing of olive tree (Olea europaea L). P1164 In Plant and Animal Genome XXIV Conference. Plant and Animal Genome

    Google Scholar 

  • Villemur P, Musho US, Delmas JM, Maamar M, Ouksili A (1984) Contribution à l’étude de la biologie florale de l’olivier (Olea europaea L.): stérilité mâle, flux pollinique et période effective de pollinisation. Fruits 39(7–8):467–473

    Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B (2012) Tilling in extremis. Plant Biotechnol J 10:761–772

    CAS  PubMed  CrossRef  Google Scholar 

  • Wenzel S, Flachowsky H, Hanke MV (2013) The fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus x domestica Borkh). Plant Cell Tiss Org 115:127–137

    CAS  CrossRef  Google Scholar 

  • Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35

    CAS  PubMed  CrossRef  Google Scholar 

  • Yakoub-Bougdal S, Chérifi D, Bonaly J (2007) Production de vitroplants d’Olea europaea var. Chemlali. Cahiers Agri 16:125–127

    Google Scholar 

  • Zeinanloo A, Shahsavari A, Mohammadi A, Naghavi MR (2009) Variance component and heritability of some fruit characters in olive (Olea europaea L.). Sci Hortic 123:68–72

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro De Pace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rugini, E., De Pace, C. (2016). Olive Breeding with Classical and Modern Approaches. In: Rugini, E., Baldoni, L., Muleo, R., Sebastiani, L. (eds) The Olive Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-48887-5_10

Download citation