Advertisement

Olive Breeding with Classical and Modern Approaches

  • Eddo Rugini
  • Ciro De PaceEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Olive breeding aims to the adoption of a fast-track breeding methodology to rapidly identify and select ortets within the available gene pool or in progenies from planned mating design for the development of new varieties that meet the current objectives of the olive industry. Basic information is needed on the breeding objectives, the genetic basis of the desired traits, the selection criteria to be adopted, and the genetic diversity available for trait enhancement and new varieties needed by the current and future olive farmers. The available genetic diversity is not yet well organized according to the gene pool concept that greatly facilitates the choice of breeding materials and breeding procedure to adopt. In addition, despite recent significant efforts, the progress of knowledge on single-locus traits and QTLs is still limited, placing the efficiency of olive breeding at a crossroad. To overcome this important limiting factor, the current selection activities could be merged with the biotechnological advancements to formulate a faster trait-enhancement procedure based on cloning and genotyping of immature embryos from planned mating designs. Developments in DNA sequencing will now allow a cost-efficient increase of genomic resources for driving the rapid acquisition of information on genes for important economical and agronomical olive traits. The in vitro germination of immature zygotic embryos, zygotic embryo cloning, and application of modern genomic resources will set the stage for an accelerated olive breeding procedure.

Keywords

Cross-breeding Gene pool Olea species Biotechnology Gene transformation Juvenility reduction 

References

  1. Abdelhamid S, Grati-Kamoun N, Marra F, Caruso T (2013) Genetic similarity among Tunisian cultivated olive estimated through SSR markers. Sci Agr 70(1):33–38Google Scholar
  2. Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10(1471):399CrossRefGoogle Scholar
  3. Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P et al (2016) Transcript analysis and regulative events during flower development in olive (Olea europaea L). PLoS ONE 11(4): e0152943. doi: 10.1371/journal.pone.0152943 Google Scholar
  4. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Global Change Biol 19(6):1645–1661Google Scholar
  5. Alruqaie IM, Al Ghamidi FA, AbuHaimed HA (2013) Determination of essential fatty acids in popular olive varieties grown in Saudi Arabia. Biotechnology 12:155–162CrossRefGoogle Scholar
  6. Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98(3–4):411–421CrossRefGoogle Scholar
  7. Aranda S, Montes Borrego M, Jiménez Díaz RM, Landa BB (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. ssp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 343:329–345CrossRefGoogle Scholar
  8. Arrillaga I, Victoria L, Segura J (1992) Micropropagation of juvenile and adult flowering ash. J Am Soc Hortic Sci 117(2):346–350Google Scholar
  9. Arsel H, Cirik N (1994) A general overview of olive breeding in Turkey. Olivae 52:25–27Google Scholar
  10. Ates D (2016) Identification of QTLs controlling genes of ripening time, flesh detachment from stone and firmness in olive (Olea europaea L.). In: XXIV plant and animal genome conference, San Diego, CA, USA, P1163Google Scholar
  11. Atienza SG, De La Rosa R, León L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34(2):725–737Google Scholar
  12. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baldoni L (2014) Genomics in olive: applications and perspectives. Acta Hortic 1057:483–486CrossRefGoogle Scholar
  14. Baldoni L, Belaj A (2009) Oil crops: olive. In: Vollmann J, Rajcan I (eds) Handbook of plant breeding. Springer, New York, pp 397–421Google Scholar
  15. Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central mediterranean basin. Ann Bot 98:935–942PubMedPubMedCentralCrossRefGoogle Scholar
  16. Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Cavallini A (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6(4):76–791Google Scholar
  17. Barone E, La Mantia M, Marchese A, Marra FP (2014) Improvement in yield and fruit size and quality of the main Italian table olive cultivar Nocellara del Belice. Sci Agri 71:52–57CrossRefGoogle Scholar
  18. Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en andalucía. Min de Agricultura, Junta de Andalucía, MadridGoogle Scholar
  19. Bartolini S, Andreini L, Guerriero R, Gentili M (2006) Improvement of the quality of table olives in Tuscany through cross-breeding and selection: preliminary results of Leccino x Konservolia hybrids. In: Proceedings of the Second International Seminar Olivebioteq, vol 1, Nov 5–10, Mazara del Vallo, Marsala, Italy, pp 143–146Google Scholar
  20. Bartolozzi F, Mencuccini M, Fontanazza G (2001) Enhancement of frost tolerance in olive shoots in vitro by cold acclimation and sucrose increase in the culture medium. Plant Cell Tiss Org 67:299–302CrossRefGoogle Scholar
  21. Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P (2012) Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS ONE 7(8):e42931PubMedPubMedCentralCrossRefGoogle Scholar
  22. Belaj A, Trujillo I, Rallo L (2000) RAPD’s analysis support the autochthon origin of olive cultivars. Acta Hortic 586:83–86Google Scholar
  23. Belaj A, Trujillo I, De la Rosa R, Rallo L, Giménez MJ (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126(1):64–71Google Scholar
  24. Belaj A, Munoz-Díez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hort 124:323–330CrossRefGoogle Scholar
  25. Bellini E, Giordani E, Parlati MV (2002a) Three new olive cultivars obtained by cross-breeding. Acta Hortic 586:221–223Google Scholar
  26. Bellini E, Giordani E, Parlati MV, Pandolfi S (2002b) Olive genetic improvement: thirty years of research. Acta Hortic 586:105–108CrossRefGoogle Scholar
  27. Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hort Sci 22:73–86Google Scholar
  28. Ben Sadok I, Moutier N, Garcia G et al (2013) Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny evidence of tree ontogeny effect. Tree Genet Genomes 9:205–221CrossRefGoogle Scholar
  29. Benelli C, De Carlo A, Lambardi M, Lynch PT (2001) Vitrification of shoot tips, nodal segments and embryogenic tissue of olive (Olea europaea L.) for germplasm cryopreservation. Acta Hortic 560:137–140CrossRefGoogle Scholar
  30. Benelli C, De Carlo A, Englmen F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185PubMedCrossRefGoogle Scholar
  31. Berenguer AS (1978) U.S. Patent No. 4,117,874. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  32. Besnard G, Bervillé A (2000) Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. CR Acad Sci III-Vie 323(2):173–181Google Scholar
  33. Besnard G, Khadari B, Villemur P, Bervillé A (2000) Cytoplasmic male sterility in the olive (Olea europaea L.). Theor Appl Genet 100:1018–1024CrossRefGoogle Scholar
  34. Besnard G, Baradat P, Chevalier D, Tagmount A, Bervillé A (2001) Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genetic Resour Crop Evol 48(2):165–182CrossRefGoogle Scholar
  35. Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101(1):25–30PubMedCrossRefGoogle Scholar
  36. Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Bot Gallica 159(3):319–328CrossRefGoogle Scholar
  37. Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, Baali-Cherif D, Brunini-Bronzini de Caraffa V, Santoni S, Vargas P, Savolainen V (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280(1756):20122833PubMedPubMedCentralCrossRefGoogle Scholar
  38. Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S, Avidan B, Ben-Ari G (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131(6):767–774CrossRefGoogle Scholar
  39. Biton I, Doron-Faigenboim A, Jamwal M, Mani Y, Eshed R, Rosen A, Sherman A, Ophir R, Lavee S, Avidan B, Ben-Ari G (2015) Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Molecular Breeding 35(4):1–14Google Scholar
  40. Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195PubMedCrossRefGoogle Scholar
  41. Bracci T, Sebastiani L, Busconi M, Fogher C, Belaj A, Trujillo I (2009) SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci Hortic 122(2):209–215CrossRefGoogle Scholar
  42. Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462PubMedCrossRefGoogle Scholar
  43. Breton CM, Berville A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. CR Biol 335:563–572CrossRefGoogle Scholar
  44. Breton C, Farinelli D, Shafiq S, Heslop-Harrison J, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10:1055–1067CrossRefGoogle Scholar
  45. Brooks RM, Olmo HP (eds) (1997) The Brooks and Olmo register of fruit and nut varieties, 3rd edn. ASHS Press, AlexandriaGoogle Scholar
  46. Bueno MA, Pintos B, Höfer M, Martin A (2005) Pro-embryos induction from Olea europaea L. isolated microspore culture. Acta Physiol Plant 27:695–701CrossRefGoogle Scholar
  47. Buffa R, Motisi A, Cutino I, Caruso T (2006) Effect of rootstock vigour on dry matter partitioning in olive (Olea europaea L). Olivebioteq, Mazara del Vallo. Marsala 1:371–376Google Scholar
  48. Cáceres ME, Ceccarelli M, Pupilli F, Sarri V, Mencuccini M (2015) Obtainment of inter-sspecific hybrids in olive (Olea europaea L.). Euphytica 201(2):307–319CrossRefGoogle Scholar
  49. Cañas LA, Wyssmann AM, Benbadis MC (1987) Isolation, culture and division of olive (Olea europaea L) protoplasts. Plant Cell Rep 5:369–371CrossRefGoogle Scholar
  50. Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Org 103:237–242CrossRefGoogle Scholar
  51. Caruso T, Marra FP, Costa F, Campisi G, Macaluso L, Marchese A (2014) Genetic diversity and clonal variation within the main sicilian olive cultivars based on morphological traits and microsatellite markers. Sci Hortic 180:130–138CrossRefGoogle Scholar
  52. Cavallotti A, Regina TMR, Quagliariello C (2003) New sources of cytoplasmic diversity in the Italian population of Olea europaea L. as revealed by RFLP analysis of mitochondrial DNA: characterization of the cox3 locus and possible relationship with cytoplasmic male sterility. Plant Sci 164:241–252CrossRefGoogle Scholar
  53. Chaari-Rkhis A, Maalej M, Messaoud SO, Drira N (2006) In vitro vegetative growth and flowering of olive tree in response to GA3 treatment. Afr J Biotechnol 5(22):2097–2302Google Scholar
  54. Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manage 78(1):108–121CrossRefGoogle Scholar
  55. Chliyeh M, Touati J, Selmaoui K, Touhami AO, Filali-Maltouf A, El Modafar C, Douira A (2014) Bibliographic inventory of the olive tree (Olea europaea L.) fungal diseases in the world. Int J Pure Appl Biosci 2:46–79Google Scholar
  56. Ciccarese F, Ambrico A, Longo O, Schiavone D (2002) Search for resistance to Verticillium-Wilt and leaf spot in Olive. Acta Hortic 586:717–720CrossRefGoogle Scholar
  57. Collani S, Moretto F, Galla G, Alagna F, Baldoni L, Muleo R (2010) A new hypothesis on the mechanism of self-incompatibility occurring in olive (Olea europaea L.): isolation, characterization and expression studies of slg and srk genes as candidates for a sporophytic self-incompatibility system. J Biotechnol 150:502CrossRefGoogle Scholar
  58. Collani S, Galla G, Ramina A, Barcaccia G, Alagna F, Càceres EM, Baldoni L, Muleo R, Perrotta G (2012) Self-incompatibility in olive: a new hypothesis on the S-locus genes controlling pollen-pistil interaction. Acta Hortic 967:133–140CrossRefGoogle Scholar
  59. Conner DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev 31:155–229Google Scholar
  60. Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Rao R (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12(1):1CrossRefGoogle Scholar
  61. Costa C (2014) Evaluation and development potential of olive cultivars in South Africa. Acta Hortic 1057:525–531Google Scholar
  62. Cozza R, Turco D, Bati CB, Bitonti MB (1997) Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss Org 51:215–223CrossRefGoogle Scholar
  63. Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben, M Cano E, Galán L, Frias B, Ribeca P, Derdak S, Gut M, Sánchez-Fernández M, García JL, Gut IG, Vargas P, Alioto TS, Gabaldón T (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5:29Google Scholar
  64. D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163PubMedCrossRefGoogle Scholar
  65. D’Angeli S, Gutiérrez-Pesce P, Altamura M, Biasi R, Ruggiero B, Muganu M, Bressan R, Rugini E (2001) Genetic transformation of olive tree (Olea europaea L.) with osmotin gene and in situ protein localisation in the transgenic tissues. Proceedings of the annual congress Società Italiana di Genetica Agraria (Book of Abstracts)Google Scholar
  66. De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106(7):1273–1282PubMedCrossRefGoogle Scholar
  67. Del Río C, Caballero JM, García-Fernandez MD (2005) Vigor (Banco de Germoplasma de Córdoba). In: Rallo L, Barranco D, Caballero J, Martín A, del Río C, Tous J, Trujillo I (eds) Las Variedades de Olivo Cultivadas en España (Libro II: Variabilidad y seleccion). Junta de Andalucia, MAPA and Ediciones Mundi-Prensa, MadridGoogle Scholar
  68. Di Vaio C, Marra FP, Scaglione G, La Mantia M, Caruso T (2012) The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit. Sci Hortic 134:72–78CrossRefGoogle Scholar
  69. Diatchenko L, Lau Y, Campbell AP, Chenchik A, Moqadam F, Huang B, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. P Natl Acad Sci Biol 93(12):6025–6030CrossRefGoogle Scholar
  70. Díaz A, Martín A, Rallo P, Barranco D, De la Rosa R (2006) Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J Am Soc Hortic Sci 131:250–255Google Scholar
  71. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry, Part A 51A:127–128CrossRefGoogle Scholar
  72. Dominguez-Garcia MC, Belaj A, De la Rosa R et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60CrossRefGoogle Scholar
  73. Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7(4):e35071Google Scholar
  74. Donini B, Roselli G (1972) Briscola. Nuova cultivar di olivo a sviluppo compatto. Riv di Ortoflorofrutticoltura It 66:103–114Google Scholar
  75. El Aabidine AZ, Charafi E, Grout J et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302CrossRefGoogle Scholar
  76. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379PubMedPubMedCentralCrossRefGoogle Scholar
  77. Estrada-Hernández MG, Valenzuela-Soto JH, Ibarra-Laclette E, Délano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137(1):44–60PubMedCrossRefGoogle Scholar
  78. Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hortic Sci 120:538–542Google Scholar
  79. Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive Propagation Manual. CSIRO, Collingwood, AustraliaGoogle Scholar
  80. Fabbri A, Beghè D, Ganino T, Nisi R (2006) Anatomical root features of two olive rootstocks of different vigour, vol 1. Olivebioteq Mazara del Vallo, Marsala, pp 457–460Google Scholar
  81. Farinelli D, Tombesi A, Hassani D (2004) Paternal and maternal effects on seed characteristics of olive cultivars. Acta Hortic 791:121–125Google Scholar
  82. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domentica Borkh.). Plant Breed 126:137–145CrossRefGoogle Scholar
  83. Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377PubMedCrossRefGoogle Scholar
  84. Fontanazza G (1987) Presentiamo la cultivar I-77. Terra e Vita 46:10–11Google Scholar
  85. Fontanazza G, Bartolozzi F (1998) Olive. In: Scarascia-Mugnozza GT, Pagnotta MA (eds) Italian contribution to plant genetics and breeding. Tipolitografia Quatrini A. & F. snc, Publisher, Viterbo, pp 723–748Google Scholar
  86. Fontanazza G, Bartolozzi F, Vergari G (1998) Fs-17. Frutticoltura 5:61Google Scholar
  87. Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128PubMedPubMedCentralCrossRefGoogle Scholar
  88. Garcia Berenguer A (1988) Selección clonal en Olea europaea, L. cultivar. Picual. ITEA 75:9–13Google Scholar
  89. Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org 86(2):131–146CrossRefGoogle Scholar
  90. Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, Saldarelli P (2016) Transcriptome profiling of two olive cultivars in response to infection by the OQDS strain of Xylella fastidiosa ssp. pauca. BMC Genom 17(1):1CrossRefGoogle Scholar
  91. Gómez-Lama Cabanás C (2015) Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front Microbiol 6:928Google Scholar
  92. González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A et al (2016) Transcriptomic analysis using olive varieties and breeding progenies identifies candidate genes involved in plant architecture. Front Plant Sci 7:240PubMedPubMedCentralCrossRefGoogle Scholar
  93. Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of the Greek olive ultivar. Chondrolia Chalkidikis. Plant Cell Tiss Org 71(1):47–54CrossRefGoogle Scholar
  94. Guerin J, Mekuria G, Burr M, Collins G, Sedgley M (2002) Selection of improved olive cultivars. Acta Hortic 622:231–234Google Scholar
  95. Hannachi H, Sommerlatte H, Breton C, Msallem M, El Gazzah M, Ben El Hadj S, Berville A (2009) Oleaster (var. sylvestris) and ssp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea ssp. europaea var. europaea). Genet Resour Crop Evol 56:393–403CrossRefGoogle Scholar
  96. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  97. Hartmann HT, Whisler JE (1970) Some rootstocks influence in the olive (Olea europaea L) var. ‘Sevillano’. J Am Soc Hortic Sci 95(6):562–565Google Scholar
  98. Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and inter simple sequence repeats (ISSR). Mol Ecol 9:857–868PubMedCrossRefGoogle Scholar
  99. Hossein AS, Hajnajari H (2006) Obtaining embryo rescued hybrid plants of olive (Mary x Roghani M.) in cross breeding for precocity induction. In: Proceedings of the second international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, 5–10 Nov, Marsala, Italy, pp 27–29Google Scholar
  100. Ibtissem L, Mezghani AM, Messaoud M (2014) Phenotypic diversity of some olive tree progenies issued from a Tunisian breeding program. Eur Sci J 10(6):292–313Google Scholar
  101. İpek A, Yılmaz K, Sıkıcı P et al (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Genet 54:313–325PubMedCrossRefGoogle Scholar
  102. Işik N, Doǧanlar S, Frary A (2011) Genetic diversity of Turkish olive varieties assessed by simple sequence repeat and sequence-related amplified polymorphism markers. Crop Sci 51(4):1646–1654CrossRefGoogle Scholar
  103. Iwano M, Takayama S (2012) Self/non-self-discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83PubMedCrossRefGoogle Scholar
  104. Janick J, Moore JN (eds) (1996) Fruit breeding. Wiley, New YorkGoogle Scholar
  105. Khadari B, El Aabidine AZ, Grout C, Sadok IB, Doligez A, Moutier N, Costes E (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hort Sci 135(6):548–555Google Scholar
  106. Khlif M, Trigui A (1986) Observations preliminaires a une selection clonale de la variete d’olivier ‘Chemlali’. Olea 17:71–75Google Scholar
  107. Khlif M, Trigui A (1990) Olive cultivars investigations, preliminary results. Acta Hortic 286:65–68CrossRefGoogle Scholar
  108. Kiew R (1979) Florae Malesianae Praecursores LX. The Oleaceae of Malesia. The genus Olea. Blumea 25(1):305–313Google Scholar
  109. Klepo T, De la Rosa R, Satovic Z, León L, Belaj A (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101CrossRefGoogle Scholar
  110. Koubouris GC, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hortic 176:91–96CrossRefGoogle Scholar
  111. Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54:663–673PubMedCrossRefGoogle Scholar
  112. Lambardi M, Caccavale A, Rugini E, Caricato G (1999) Histological observations on somatic embryos of olive (Olea europaea L.). Acta Hortic 474:67–70CrossRefGoogle Scholar
  113. Lambardi M, Benelli C, De Carlo A, Fabbri A, Grassi S, Lynch PT (2000) Medium and long term in vitro conservation of olive germplasm (Olea europaea L.). Acta Hortic 586:109–112Google Scholar
  114. Lavee S (1978) ‘Kadesh’ table olive. HortScience 13:62–63Google Scholar
  115. Lavee S (1989) Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing. Acta Hortic 239:311–322Google Scholar
  116. Lavee S (1990) Aims, methods and advances in breeding of new olive (Olea europaea L.) cultivars. Acta Hortic 286:23–36CrossRefGoogle Scholar
  117. Lavee S (2008) New table olive varieties intended for harvest facilitation. In Jornadas Internacionales de la Aceituna de Mesa. Dos Hermanas, Seville, Spain, March 26–27, 2008Google Scholar
  118. Lavee S (2013) Evaluation of the need and present potential of olive breeding indicating the nature of the available genetic resources involved. Sci Hortic 61:333–339CrossRefGoogle Scholar
  119. Lavee S, Haskal A, Wodner M (1986) ‘Barnea’ a new olive cultivar from first breeding generation. Olea 17:95–99Google Scholar
  120. Lavee S, Harshemesh H, Haskal A, Meni V, Wodner M, Ogrodovich A, Avidan B, Wiesman Z, Avidan N, Trapero-Casas A (1999) ‘Maalot’ a new orchard-resistant cultivar to peacock eye leaf spot (Spilocaea oleagina Cast.). Olivae 78:51–59Google Scholar
  121. Lavee S, Avidan B, Meni Y (2003) Askal, a new high-performing oil variety for intensive and super-intensive olive orchard. Olivae 97:53–59Google Scholar
  122. Lavee S, Avidan B, Meni Y, Haskal A, Wodner M (2004) Three new semi-dwarf table olive varieties. Olivae 102:33–41Google Scholar
  123. Lavee S, Avidan B, Ben-Ari G (2014) Trends in breeding new olive varieties in Israel for quality and economic management. Agric Sci 5:701–709Google Scholar
  124. Lavee S, Singer A, Haskal A, Avidan B, Avidan N, Wonder M (2008) Diversity in performance between trees within the traditional Souri olive cultivar (Olea europea L.) in Israel under rainfed conditions. Olivae 109: 33–45Google Scholar
  125. Lazovic B, Adakalic M, Perovic T (2014) Clonal variability of Montenegrin olive cultivar “Zutica”. Acta Hortic 1057:501–507CrossRefGoogle Scholar
  126. Leon L, De La Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortScience 43(2):479–502Google Scholar
  127. León L, Rallo L, Del Río C, Martín LM (2004) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123:73–78CrossRefGoogle Scholar
  128. León L, Santos-Antunes AF, Martın LM, Garrido A, Rallo L (2005) Obtencion de nuevas variedades por cruzamientos. In: Rallo L, Barranco D, Caballero J, Martín A, Del Rio C, Tous J, Trujillo I (eds) Las Variedades de Olivo Cultivadas en Espana (Libro III: Mejora genética y biotecnologıa). Junta de Andalucıa, MAPA and Ediciones Mundi-Prensa, MadridGoogle Scholar
  129. Leva AR (2011) Innovative protocol for “ex vitro rooting” on olive micropropagation. Central Eur J Biol 6(3):352–358Google Scholar
  130. Leva AR, Petruccelli R (2007) Field performance of olive somaclones derived from somatic embryos. Acta Hortic 748:181–189CrossRefGoogle Scholar
  131. Leva AR, Petruccelli R, Bartolini G (1994) Mannitol “in vitro” culture of Olea europaea L. (var. Maurino). Acta Hortic 356:43–46CrossRefGoogle Scholar
  132. Leva AR, Muleo R, Petruccelli R (1995) Long-term somatic embryogenesis from immature olive cotyledons. J Hortic Sci Biotechnol 70:417–421Google Scholar
  133. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166PubMedCrossRefGoogle Scholar
  134. Lopes T, Capelo A, Brito G, Loureiro J, Santos C (2009) Genetic variability analyses of the somatic embryogenesis induction process in Olea spp. using nuclear microsatellites. Trees Struct Funct 23(1):29–36Google Scholar
  135. Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25CrossRefGoogle Scholar
  136. Lumaret R, Ouazzani N (2001) Ancient wild olives in Mediterranean forests. Nature 413:700PubMedCrossRefGoogle Scholar
  137. Lynch PT, Siddika A, Mehra A, Fabbri A, Benelli C, Lambardi M (2007) The challenge of successful cryopreservation of olive (Olea europaea L.) shoot tips. Adv Hortic Sci 21:211–214Google Scholar
  138. Lynch PT, Siddika A, Johnston JW, Trigwell SM, Mehra A, Benelli C (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56PubMedCrossRefGoogle Scholar
  139. Marchese A, Marra FP, Costa F, Quartararo A, Fretto S, Caruso T (2016) An investigation of the self-and inter-incompatibility of the olive cultivars’ Arbequina’and’Koroneiki’in the Mediterranean climate of Sicily. Austr J Crop Sci 10(1):88Google Scholar
  140. Mariotti R, Cultrera NG, Díez CM, Baldoni L, Rubini A (2010) Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biol 10(1):211PubMedPubMedCentralCrossRefGoogle Scholar
  141. Marra FP, Marchese A, Campisi G, Guzzetta G, Caruso T, Mafrica R, Pangallo S (2014) Intra-cultivar diversity in southern italy olive cultivars depicted by morphological traits and SSR markers. Acta Hortic 1057:571–576CrossRefGoogle Scholar
  142. Martelli GP, Boscia D, Porcelli F, Saponari M (2016) The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. Eur J Plant Pathol 144:235–243CrossRefGoogle Scholar
  143. Martin GC, Ferguson L, Sibbett GS (2005) Flowering, pollination, fruiting, alternate bearing, and abscission. In: Sibbett GS, Ferguson L, Coviello JL, Lindstrand M (eds) Olive production manual. University of California Agriculture and Natural Resources, Oakland, pp 49–54Google Scholar
  144. Martinez D, Arroyo-Garcia R, Revilla AM (1999) Cryopreservation of in vitro grown shoots-tips of Olea europaea var. Arbequina. CryoLetters 20:29–36Google Scholar
  145. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic 159:88–95CrossRefGoogle Scholar
  146. Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine MC, Kuszala C, Gianinazzi S (2010) Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol 9:1159–1167CrossRefGoogle Scholar
  147. Medina E, Morales-Sillero A, Ramìrez EM, Rallo P, Brenes M, Romero C (2012) New genotypes of table olives: profile of bioactive compounds. Int J Food Sci Technol 47:2334–2341CrossRefGoogle Scholar
  148. Mencuccini M (1991) Protoplast culture isolated from different tissues of olive (Olea europoea L.) cultivars. Physiol Plant 1991:82–14Google Scholar
  149. Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26(1):163–182CrossRefGoogle Scholar
  150. Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissue. Plant Cell Tiss Org 32:283–288CrossRefGoogle Scholar
  151. Miano D, Gutierrez Pesce P, Lupi R, Dradi G, Roncasaglia R, Taratufolo C et al (2004) RolABC genes are differently regulated in the organs and modify gene expression and morphology of olive cultivar Canino. In: Proceedings of the XLVIII annual meet Italian society of agricultural genetics SIFV-SIGA, Lecce, ItalyGoogle Scholar
  152. Micheli M, Mencuccini M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv Hortic Sci 12:163–168Google Scholar
  153. Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. var. Moraiolo) effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292CrossRefGoogle Scholar
  154. Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Physiol 139:269–273CrossRefGoogle Scholar
  155. Mkize N, Hoelmer KA, Villet MH (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp. cuspidate, in the Eastern Cape of South Africa. Biocontrol Sci Technnol 18:991–1004CrossRefGoogle Scholar
  156. Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182PubMedCrossRefGoogle Scholar
  157. Moral J, Díez CM, León L, De la Rosa R, Santos-Antunes F Barranco D (2013) Female genitor effect on the juvenile period of olive seedlings. Sci Hortic 156:99–105Google Scholar
  158. Mulas M (1999) Characterisation of olive wild ecotypes. Acta Hortic 474:121–124CrossRefGoogle Scholar
  159. Muleo R, Morgante M, Velasco R, Cavallini A, Perrotta G, Baldoni L (2012) Olive tree genomic. In: Mazzalupo I (ed) Olive germplasm. The olive cultivation, table and olive oil industry in Italy. InTech Publisher, Rijeka, pp 133–148Google Scholar
  160. Muzzalupo I, Stefanizzi F, Perri E (2009) Evaluation of olives cultivated in southern Italy by simple sequence repeat markers. HortScience 44(3):582–588Google Scholar
  161. Nardini A, Gascò A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol 26:1137–1144Google Scholar
  162. Naseer MI, Ullah I, Narasimhan ML, Lee HY, Bressan RA, Yoon GH, Kim MO (2014) Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Disease 5(3):e1150PubMedPubMedCentralCrossRefGoogle Scholar
  163. Obaid R, Abu-Qaoud H, Arafeh R (2014) Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers. Biotechnol Biotechnol Equip 28(5):813–817Google Scholar
  164. Oražem P, Štajner N, Bohanec B (2013) Effect of X-ray irradiation on olive shoot culture evaluated by morphological measurements, nuclear DNA content and SSR and AFLP markers. Trees-Struct Funct 27(6):1587–1595Google Scholar
  165. Orinos P, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tiss Org 27:183–187CrossRefGoogle Scholar
  166. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:883–887CrossRefGoogle Scholar
  167. Oz B, Dag A, Kerem Z, Lavee S, Kadereit JW (2008) Local old olive landrace varieties in Israel-valuable plant genetic resources in olive cultivation. Isr J Plant Sci 56(3):265–271CrossRefGoogle Scholar
  168. Ozair M, Hafiz IA, Abbasi NA, Mahmood MA, Bibi N (2014) Effect of different concentrations of Oryzalin on in vitro growth of explants of olive cv. Moraiolo. Sch J Agric Sci 4(1):51–59Google Scholar
  169. Padula G, Giordani E, Bellini E, Rosati A, Pandolfi S, Paoletti A, Pannelli G, Ripa V, De Rose F, Perri E, Buccoliero A, Mennone C, Buccoliero A (2008) Field evaluation of new olive (Olea europaea L.) selections and effects of genotype and environment on productivity and fruit characteristics. Adv Hortic Sci 1:87–94Google Scholar
  170. Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455PubMedPubMedCentralGoogle Scholar
  171. Pannelli G (2006) Varietà e portinnesti “superintensivi”. Olivo e Olio 2:47–49Google Scholar
  172. Pannelli G, Famiani F, Rugini E (1992) Effects of a change in ploidy level on anatomical, cytological, reproductive and growth performance changes and polyamine contens, in mutants of gamma irradiated olive plants. Acta Hortic 317:209–218Google Scholar
  173. Pannelli G, Volpe D, Preziosi P, Famiani F (1993) Comparison of the vegetative and reproductive characteristics of traditional olive cultivar and selected low vigorous accessions in central Italy. Acta Hortic 356:123–126Google Scholar
  174. Parlati MV, Bellini E, Perri E, Pandolfi S, Giordani E, Martelli S (1994) Genetic improvement of olive: initial observations on selections made in Florence. Acta Hortic 356:87–90CrossRefGoogle Scholar
  175. Pérez A, León L, Pascual M, Romero-Segura C, Sánchez-Ortiz A, De la Rosa R, Sanz C (2014) Variability of virgin olive oil phenolic compounds in segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE 9(3):e92898Google Scholar
  176. Perri E, Parlati MV, Rugini E (1994) Isolation and culture of olive (Olea europaea L.) cultivar protoplasts. Acta Hortic 356:51–53CrossRefGoogle Scholar
  177. Pritsa TS, Voyiatzis DG, Voyiatzi CJ, Sotiriou MS (2003) Evaluation of vegetative growth traits and their relation to time to first flowering of olive seedlings. Austr J Agric Res 54:371–376CrossRefGoogle Scholar
  178. Rallo L (1995) Selection and breeding of olive in Spain. Olivae 59:46–53Google Scholar
  179. Rallo L (2014a) Breeding oil and table olives for mechanical harvesting in Spain. HortTechnology 24(3):295–300Google Scholar
  180. Rallo L (2014b) Looking towards tomorrow in olive growing: challenges in breeding. Acta Hortic 1057:467–482CrossRefGoogle Scholar
  181. Rosati A, Paoletti A, Caporali S, Perri E (2013) The role of tree architecture in super high density olive orchards. Sci Hortic 161:24–29CrossRefGoogle Scholar
  182. Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of olive ‘mission’explants. Asian J Plant Sci 8(7):505CrossRefGoogle Scholar
  183. Rugini E (1984) In vitro propagation of some olive cultivars with different root-ability and medium development using analitycal data from developing shoots and embryos. Sci Hortic 24:123–134CrossRefGoogle Scholar
  184. Rugini E (1986) Olive. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10., SpringerBerlin, Germany, pp 253–267Google Scholar
  185. Rugini E (1988) Somatic embryogenesis and plant regeneration in Olive (Olea europaea L.). Plant Cell Tiss Org 14:207–214CrossRefGoogle Scholar
  186. Rugini E (1992) Involvement of polyamines in auxin and Agrobacterium rhizogenes-induced rooting of fruit trees in vitro. Am J Hortic Sci 117:532–536Google Scholar
  187. Rugini E (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol II. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 171–189CrossRefGoogle Scholar
  188. Rugini E (2015) State of the art on transgenic fruit trees and considerations on the consequences of the prohibitions imposed on research in Italy (Stato dell’arte sulle piante da frutto transgeniche e considerazioni sulle conseguenze dei divieti imposti alla ricerca in Italia). Italus Hortus 22:31–57Google Scholar
  189. Rugini E, Bottalico G (2011) Tecniche di risanamento. Università degli Studi di Bari, Bari, pp 51–53Google Scholar
  190. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260PubMedCrossRefGoogle Scholar
  191. Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol 10. Springer, Berlin, pp 593–641Google Scholar
  192. Rugini E, Jacoboni A, Bazzoffia A (1987) A simple in vitro method to avoid the initial dark period and to increase rooting in woody species. Acta Hortic 227:438–440Google Scholar
  193. Rugini E, Pannelli G, Ceccarelli M, Muganu M (1996) Isolation of triploid and tetraploid olive (Olea europaea L.) plants from mixoploid cv. “Frantoio” and “Leccino” mutants by in vivo and in vitro selection. Plant Breed 115:23–27CrossRefGoogle Scholar
  194. Rugini E, Di Francesco G, Muganu M, Astolfi S, Caricato G (1997) The effect of polyamines and hydrogen peroxide in root formation in olive cuttings and in the role of polyamines as an early marker for rooting ability. In: Altman A, Waisel AE (eds) Biology of root formation and development, vol 65. Series Basic Life Sciences, Springer, Berlin, pp 65–73Google Scholar
  195. Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var. sativa) transformation. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publishers, Massachusetts, USA, pp 245–279Google Scholar
  196. Rugini E, Pannelli G, Sonnoli A, Bartolini G, De Angelis S (2003) Impiego di genotipi a sviluppo contenuto per facilitare l’impiego di macchine scavallatrici operanti in continuo per la raccolta integrale delle olive. Frutticoltura 1:57–61Google Scholar
  197. Rugini E, Gutierrez-Pesce P, Muleo R (2008) Olive. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic temperate fruits and nuts. Blackwell Publishing, Oxford, UK, pp 233–258CrossRefGoogle Scholar
  198. Rugini E, Cristofori V, Silvestri C (2016a) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotechnol Adv 34:687–696PubMedCrossRefGoogle Scholar
  199. Rugini E, Silvestri C, Ceccarelli M, Muleo R, Cristofori V (2016b) Mutagenesis and biotechnology techniques as tools for selecting new stable diploid and tetraploid olive genotypes and their dwarfing agronomical characterization. HortScience 51(7):1–6Google Scholar
  200. Saida S, Chatelet P, Noureddine O et al (2005) Micropropagation of eight Moroccan and French olive cultivars. J Hortic Sci 40(1):193–196Google Scholar
  201. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9(1): 30–33Google Scholar
  202. Sánchez-Romero C, Swennen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. Cryo Letters 5:359–372Google Scholar
  203. Santos-Antunes F, León L, De la Rosa R, Alvarado J, Mohedo A, Trujillo I, Rallo L (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortScience 40:1213–1215Google Scholar
  204. Sedgley M (2000) Wild olive selection for quality oil production. A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 00/116 RDC Project No UA-41A. https://rirdc.infoservices.com.au/items/00-116
  205. Seifi E, Guerin J, Kaiser B, Sedgley M (2011) Sexual compatibility and floral biology of some olive cultivars. NZ J Crop Hortic Sci 39(2):41–151CrossRefGoogle Scholar
  206. Selak GV, Cuevas J, Ban SG, Perica S (2014) Pollen tube performance in assessment of compatibility in olive (Olea europaea L.) cultivars. Sci Hortic 165:36–43CrossRefGoogle Scholar
  207. Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papilla stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29:561–572PubMedCrossRefGoogle Scholar
  208. Sesli M, Onan E, Oden S, Yener H, Yegenoglu ED (2010) Resistance of olive cultivars to Verticillium dahliae. Sci Res Ess 5:1561–1565Google Scholar
  209. Shah SA, Yoon GH, Chung SS, Abid MN, KimTH Lee HY, Kim MO (2016) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiat 22:1–10Google Scholar
  210. Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europea L.) somatic and encapsulation-vitrification. Cryoletters 21(6):357–366PubMedGoogle Scholar
  211. Shibli RA, Shatnawi M, Abu E, Al-Juboory H (2001) Somatic embryogenesis and plant recovery from callus of “Nabali” olive (Olea europaea L.). Sci Hortic 88:243–256CrossRefGoogle Scholar
  212. Sofo A, Manfreda S, Fiorentino M, Dichio B, Xiloyannis C (2008) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth Syst Sci Discuss 12(1):293–301CrossRefGoogle Scholar
  213. Strobel GA, Nachmias A, Wilford MH (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66:2581–2585CrossRefGoogle Scholar
  214. Suarez MP, Lopez-Rivares EP, Cantero ML, Ordovas J (1990) Clonal selection on ‘Manzanilla de Sevilla’. Acta Hortic 286:117–119CrossRefGoogle Scholar
  215. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2(3):195–212CrossRefGoogle Scholar
  216. Titouh K, Khelifi L, Titouh-Hadj Moussa K, Cerezo-Medina S, Mercado JA, Pliego-Alfaro F (2014) Evaluation of the effect of phosphinothricin, as selection agent, on the growth of olive somatic embryos. Acta Hortic 1057:533–542CrossRefGoogle Scholar
  217. Torreblanca R, Cerezo S, Palomo-Rìos E, Marcado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tiss Org 103:61–69CrossRefGoogle Scholar
  218. Torres LE, Taborda R, Costero B, Degutis L, Teich I, Prenol LV, Conci L (2014a) Genetic relationships between olive (Olea europaea L.) cultivars and promissory genotypes in Catamarca, Argentina. Acta Hortic 1057:495–499CrossRefGoogle Scholar
  219. Torres MR, Cornejo P, Bertoldi V, Ferrer MS, Masuelli RW (2014b) Development of a microsatellite database for identification of olive (Olea europaea L.) cultivars in Mendoza, Argentina. Acta Hortic 1057:521–524CrossRefGoogle Scholar
  220. Toufik I, Guenoun F, Belkoura I (2014) Embryogenesis expression from somatic explants of olive (Olea europaea L.) cv Picual. Moroccan J Biol 11:17–25Google Scholar
  221. Tous J, Romero A, Plana J (1999) IRTA-i 18, clone della varietà di olivo Arbequina. Olivae 77:50–52Google Scholar
  222. Trifilò F, Lo Gullo MA, Nardini A, Pernice F, Salleo S (2007) Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees Struct Funct 21:549–556CrossRefGoogle Scholar
  223. Trigui A (1996) Improving the quantity and quality of olive production in Tunisia: unavoidable need and outlook for olive identification and breeding. Olivae 61:34–40Google Scholar
  224. Troncoso A, Liñán J, Prieto J, Cantos M (1990) Influence of different olive rootstocks on growth and production of ‘Gordal Sevillana’. Acta Hortic 286:133–136CrossRefGoogle Scholar
  225. Trujillo I, Rallo L, Arús P (1995) Identifying olive cultivars by isozyme analysis. J Am Soc Hortic Sci 120(2):318–324Google Scholar
  226. Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM (2014) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes 10:141–155CrossRefGoogle Scholar
  227. Unver T,  Turktas M, Dorado G, Hernandez P  (2016) De novo whole genome sequencing of olive tree (Olea europaea L). P1164 In Plant and Animal Genome XXIV Conference. Plant and Animal GenomeGoogle Scholar
  228. Villemur P, Musho US, Delmas JM, Maamar M, Ouksili A (1984) Contribution à l’étude de la biologie florale de l’olivier (Olea europaea L.): stérilité mâle, flux pollinique et période effective de pollinisation. Fruits 39(7–8):467–473Google Scholar
  229. Wang TL, Uauy C, Robson F, Till B (2012) Tilling in extremis. Plant Biotechnol J 10:761–772PubMedCrossRefGoogle Scholar
  230. Wenzel S, Flachowsky H, Hanke MV (2013) The fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus x domestica Borkh). Plant Cell Tiss Org 115:127–137CrossRefGoogle Scholar
  231. Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35PubMedCrossRefGoogle Scholar
  232. Yakoub-Bougdal S, Chérifi D, Bonaly J (2007) Production de vitroplants d’Olea europaea var. Chemlali. Cahiers Agri 16:125–127Google Scholar
  233. Zeinanloo A, Shahsavari A, Mohammadi A, Naghavi MR (2009) Variance component and heritability of some fruit characters in olive (Olea europaea L.). Sci Hortic 123:68–72CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Agricultural and Forestry ScienceUniversity of TusciaViterboItaly

Personalised recommendations