Skip to main content

Bayesian Inference and Optimal Censoring Scheme Under Progressive Censoring

  • Chapter
  • First Online:
Advances in Reliability and System Engineering

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

In recent times an extensive work has been done related to the different aspects of the progressive censoring schemes. Here we deal with the statistical inference of the unknown parameters of a three-parameter Weibull distribution based on the assumption that the data are progressively Type-II censored. The maximum likelihood estimators of the unknown parameters do not exist due to the presence of the location parameter. Therefore, Bayesian approach seems to be a reasonable alternative. We assume here that the location parameter follows a uniform prior and the shape parameter follows a log-concave prior density function. We further assume that the scale parameter has a conjugate gamma prior given the shape and the location parameters. Based on these priors the Bayes estimate of any function of the unknown parameters under the squared error loss function and the associated highest posterior density credible interval are obtained using Gibbs sampling technique. We have also used one precision criterion to compare two different censoring schemes, and it can be used to find the optimal censoring scheme. Since finding the optimal censoring scheme is a challenging problem from the computational view point, we propose suboptimal censoring scheme, which can be obtained quite conveniently. We have carried out some Monte Carlo simulations to observe the performances of the proposed method, and for illustrative purposes, we presented the analysis of one data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishnan, N. (2007), ``Progressive censoring methodology: an appraisal’’, TEST, vol. 16, 211-259.

    Google Scholar 

  2. Balakrishnan, N. and Aggarwala, R. (2000), Progressive censoring: theory, methods, and applications, Springer, New York.

    Google Scholar 

  3. Balakrishnan, N. and Cramer, E. (2014), The art of progressive censoring: applications to reliability and quality, Birkhauser, New York.

    Google Scholar 

  4. Balasooriya, U., Saw, S.L.C. and Gadag, V.G. (2000), ``Progressively censored reliability sampling plan for the Weibull distribution’’, Technometrics, vol. 42, 160 - 168.

    Google Scholar 

  5. Berger, J.O. and Sun, D. (1993), ``Bayesian analysis for the Poly-Weibull distribution’’, Journal of the American Statistical Association, vol. 88, 1412 - 1418.

    Google Scholar 

  6. Congdon, P. (2006), Bayesian statistical modelling, 2nd. edition, Wiley, New Jersey.

    Google Scholar 

  7. Devroye, L. (1984), ``A simple algorithm for generating random variates with a log-concave density’’, Computing, vol. 33, 247-257.

    Google Scholar 

  8. Geman, S. and Geman, A. (1984), ``Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images’’, IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 6, 721 - 740.

    Google Scholar 

  9. Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995), Continuous univariate distribution, (2nd edition), New York, Wiley.

    Google Scholar 

  10. aminskiy, M. P., and Krivtsov, V. V. (2005), ``A Simple Procedure for Bayesian Estimation of the Weibull Distribution’’, IEEE Transactions on Reliability Analysis, vol. 54, 612¡V616.

    Google Scholar 

  11. Kundu, D. (2008), ``Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring’’, Technometrics, vol. 50, 144-154.

    Google Scholar 

  12. Kundu, D. and Joarder, A. (2006), ``Analysis of type-II progressively hybrid censored data’’, Computational Statistics abd Data Analysis, vol. 50, 2509 - 2528.

    Google Scholar 

  13. Lawless, J.F. (1982), Statistical models and methods for lifetime data, Wiley, New York.

    Google Scholar 

  14. Murthy, D.N.P., Xie, M. and Jiang, R. (2004), Weibull Models, John Wiley and Sons, New York.

    Google Scholar 

  15. Nagatsuka, H., Kamakura, T. and Balakrishanan, N. (2013), ``A consistent method of estimation for the three-parameter Weibull distribution’’, Computational Statistics and Data Analysis, vol. 58, 210 -226.

    Google Scholar 

  16. Rao, C.R. (1945), ``Information and the accuracy attainable in the estimation of statistical parameters’’, Bulletin of Calcutta Mathematical Society, vol. 37, 81 - 91.

    Google Scholar 

  17. Smith, R. L. and Naylor, J. C. (1987), ``A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution’’, Applied Statistics, 358-369.

    Google Scholar 

  18. Viveros, R. and Balakrishnan, N. (1994), ``Interval estimation of parameters of life from progressively censored data’’, Technometrics, vol. 36, 84 - 91.

    Google Scholar 

  19. Zhang, Y. and Meeker, W. Q. (2005), ``Bayesian life test planning for the Weibull distribution with given shape parameter’’, Metrika, vol. 61, 237-249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 2: To prove Theorem 2, it is enough to prove that

$$ \frac{{{\text{d}}^{2} }}{{{\text{d}}\alpha^{2} }}\ln \left[ {b + \sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } } \right] > 0. $$

Now consider

$$ g(\alpha ) = b + \sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } ; $$

then

$$ g^{\prime } (\alpha ) = \frac{\text{d}}{{{\text{d}}\alpha }}g(\alpha ) = \sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } \ln \left( {t_{i} - \mu } \right) $$

and

$$ g^{\prime \prime } (\alpha ) = \frac{{{\text{d}}^{2} }}{{{\text{d}}\alpha^{2} }}g(\alpha ) = \sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } \left( {\ln \left( {t_{i} - \mu } \right)} \right)^{2} . $$

Since

$$ \begin{aligned} & \left( {\sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } \left( {\ln \left( {t_{i} - \mu } \right)} \right)^{2} } \right)\left( {\sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } } \right) \\ & \quad - \left( {\sum\limits_{i = 1}^{m} \left( {1 + R_{i} } \right)\left( {t_{i} - \mu } \right)^{\alpha } \ln \left( {t_{i} - \mu } \right)} \right)^{2} \\ & = \sum\limits_{1 \le i < j \le m} \left( {R_{i} + 1} \right)\left( {R_{j} + 1} \right)\left( {\ln \left( {t_{i} - \mu } \right) - \ln \left( {t_{j} - \mu } \right)} \right)^{2} \ge 0, \\ \end{aligned} $$

the result follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vishwanath, S., Kundu, D. (2017). Bayesian Inference and Optimal Censoring Scheme Under Progressive Censoring. In: Ram, M., Davim, J. (eds) Advances in Reliability and System Engineering. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-48875-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48875-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48874-5

  • Online ISBN: 978-3-319-48875-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics