Advertisement

The Cl Requirement for Oxygen Evolution by Photosystem II Explored Using Enzyme Kinetics and EPR Spectroscopy

  • Alice HaddyEmail author
  • Vonda Sheppard
  • Rachelle Johnson
  • Eugene Chen
Chapter

Summary

Chloride is a well-known activator of oxygen evolution activity in photosystem II. Its effects have been characterized over several decades of research, as methods have developed and improved. By replacing chloride with other small anions with a range of chemical properties, a picture of the requirements of a successful anion activator can be formulated. In this review, the results of experiments on the chloride effect using enzyme kinetics methods and electron paramagnetic resonance spectroscopy are described, with summaries for the major anion activators and inhibitors that have been studied.

Keywords

Chloride Photosystem II Oxygen evolution Electron paramagnetic resonance spectroscopy Water oxidation Water splitting Inhibitor Activator Kinetics 

Notes

Acknowledgements

This work was supported by grants from the National Science Foundation, the Camille and Henry Dreyfus Foundation, and the UNCG Office of Research. Many thanks to Sergei Baranov, David Bryson, and Hong Qian for technical assistance.

References

  1. Andersson, B., C. Critchley, I. J. Ryrie, C. Jansson, C. Larsson and J. M. Anderson (1984). “Modification of the chloride requirement for photosynthetic O2 evolution. The role of the 23 kDa polypeptide.” FEBS Letters 168: 113–117.CrossRefGoogle Scholar
  2. Andréasson, L.-E. and K. Lindberg (1992). “The inhibition of photosynthetic oxygen evolution by ammonia probed by EPR.” Biochimica et Biophysica Acta 1100: 177–183.CrossRefGoogle Scholar
  3. Andréasson, L.-E., Ö. Hansson and K. von Schenck (1988). “The interaction of ammonia with the photosynthetic oxygen-evolving system.” Biochimica et Biophysica Acta 936: 351–360.CrossRefGoogle Scholar
  4. Arnon, D. I. and F. R. Whatley (1949). “Is chloride a coenzyme of photosynthesis?“ Science 110: 554–556.PubMedCrossRefGoogle Scholar
  5. Baumgarten, M., J. S. Philo and G. C. Dismukes (1990). “Mechanism of photoinhibition of photosynthetic water oxidation by Cl depletion and F substitution: Oxidation of a protein residue.” Biochemistry 29: 10814–10822.PubMedCrossRefGoogle Scholar
  6. Beck, W. F. and G. W. Brudvig (1986a). “Ammonia binds to the manganese site of the O2-evolving complex of photosystem II in the S2 state.” Journal of the American Chemical Society 108: 4018–4022.CrossRefGoogle Scholar
  7. Beck, W. F. and G. W. Brudvig (1986b). “Binding of amines to the O2-evolving center of Photosytem II.” Biochemistry 25: 6479–6486.PubMedCrossRefGoogle Scholar
  8. Berthold, D. A., G. T. Babcock and C. F. Yocum (1981). “A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes.” FEBS Letters 134: 231–234.CrossRefGoogle Scholar
  9. Boussac, A. (1995). “Exchange of chloride by bromide in the manganese Photosystem-II complex studied by cw- and pulsed-EPR.” Chemical Physics 194: 409–418.CrossRefGoogle Scholar
  10. Boussac, A. and A. W. Rutherford (1994). “Electron transfer events in chloride-depleted photosystem II.” Journal of Biological Chemistry 269: 12462–12467.PubMedGoogle Scholar
  11. Boussac, A., J.-L. Zimmermann and A. W. Rutherford (1989). “EPR signals from modified charge accumulation states of the oxygen evolving enzyme in Ca2+-deficient Photosystem II.” Biochemistry 28: 8984–8989.PubMedCrossRefGoogle Scholar
  12. Boussac, A., A. W. Rutherford and S. Styring (1990a). “Interaction of ammonia with the water splitting enzyme of photosystem II.” Biochemistry 29: 24–32.PubMedCrossRefGoogle Scholar
  13. Boussac, A., J.-L. Zimmermann and A. W. Rutherford (1990b). “Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca2+-depleted photosystem II.” FEBS Letters 277: 69–74.PubMedCrossRefGoogle Scholar
  14. Boussac, A., M. Sugiura, Y. Inoue and A. W. Rutherford (2000). “EPR study of the oxygen evolving complex in His-tagged photosystem II from the cyanobacterium Synechococcus elongatus.” Biochemistry 39: 13788–13799.PubMedCrossRefGoogle Scholar
  15. Boussac, A., N. Ishida, M. Sugiura and F. Rappaport (2012). “Probing the role of chloride in photosystem II from Thermosynechococcus elongatus by exchanging chloride for iodide.” Biochimica et Biophysica Acta 1817: 802–810.PubMedCrossRefGoogle Scholar
  16. Bricker, T. M., J. L. Roose, R. D. Fagerlund, L. K. Frankel and J. J. Eaton-Rye (2012). “The extrinsic proteins of photosystem II.” Biochimica et Biophysica Acta 1817: 121–142.PubMedCrossRefGoogle Scholar
  17. Britt, R. D., J.-L. Zimmermann, K. Sauer and M. P. Klein (1989). “Ammonia binds to the catalytic Mn of the oxygen evolving complex of photosystem II: Evidence by electron spin echo envelope modulation spectroscopy.” Journal of the American Chemical Society 111: 3522–3532.CrossRefGoogle Scholar
  18. Broser, M., C. Glöckner, A. Gabdulkhakov, A. Guskov, J. Buchta, J. Kern, F. Müh, H. Dau, W. Saenger and A. Zouni (2011). “Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn.” Journal of Biological Chemistry 286: 15964–15972.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brudvig, G. W., J. L. Casey and K. Sauer (1983). “The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution.” Biochimica et Biophysica Acta 723: 366–371.CrossRefGoogle Scholar
  20. Brynda, M. and R. D. Britt (2010). The manganese-calcium cluster of the oxygen-evolving system: Synthetic models, EPR studies, and electronic structure calculations. Metals in Biology: Applications of High-Resolution EPR. G. Hanson and L. Berliner, Springer Science: 203–271.Google Scholar
  21. Bryson, D. I., N. Doctor, R. Johnson, S. Baranov and A. Haddy (2005). “Characteristics of iodide activation and inhibition of oxygen evolution by photosystem II.” Biochemistry 44: 7354–7360.PubMedCrossRefGoogle Scholar
  22. Casey, J. L. and K. Sauer (1984). “EPR detection of a cryogenically photogenerated intermediate in photosynthetic oxygen evolution.” Biochimica et Biophysica Acta 767: 21–28.CrossRefGoogle Scholar
  23. Chen, X. (2008). Mathematical models for the pH dependence of oxygen evolution under fluoride inhibition and effects of nitrite on oxygen evolution in photosystem II, Master’s Thesis, UNC-Greensboro.Google Scholar
  24. Clemens, K. L., D. A. Force and R. D. Britt (2002). “Acetate binding at the Photosystem II oxygen evolving complex: An S2-state multiline signal ESEEM study.” Journal of the American Chemical Society 124: 10921–10933.PubMedCrossRefGoogle Scholar
  25. Damoder, R., V. V. Klimov and G. C. Dismukes (1986). “The effect of Cl depletion and X reconstitution on the oxygen-evolution rate, the yield of the multiline manganese EPR signal and EPR Signal II in the isolated photosystem-II complex.” Biochimica et Biophysica Acta 848: 378–391.PubMedCrossRefGoogle Scholar
  26. de Paula, J. C., P. M. Li, A.-F. Miller, B. W. Wu and G. W. Brudvig (1986). “Effect of the 17- and 23-kilodalton polypeptides, calcium, and chloride on electron transfer in photosystem II.” Biochemistry 25: 6487–6494.PubMedCrossRefGoogle Scholar
  27. Debus, R. J. (2014). “Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.” Biochemistry 53: 2941–2955.PubMedCrossRefGoogle Scholar
  28. DeRose, V. J., M. J. Latimer, J.-L. Zimmermann, I Mukerji, V. K. Yachandra, K. Sauer and M. P. Klein (1995). “Fluoride substitution in the Mn cluster from photosystem II: EPR and X-ray absorption spectroscopy studies.” Chemical Physics 194: 443–459.CrossRefGoogle Scholar
  29. Dilbeck, P. L., H. J. Hwang, I. Zaharieva, L. Gerencser, H. Dau and R. L. Burnap (2012). “The D1-D61N mutation in Synechocystis sp. PCC 6803 allows the observation of pH-sensitive intermediates in the formation and release of O2 from photosystem II.” Biochemistry 51: 1079–1091.PubMedCrossRefGoogle Scholar
  30. Dismukes, G. C. and Y. Siderer (1980). “EPR spectroscopic observations of a manganese center associated with water oxidation in spinach chloroplasts.” FEBS Letters 121: 78–80.CrossRefGoogle Scholar
  31. Dismukes, G. C. and Y. Siderer (1981). “Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water.” Proceedings of the National Academy of Science 78: 274–278.CrossRefGoogle Scholar
  32. Dorlet, P., M. Di Valentin, G. T. Babcock and J. L. McCracken (1998). “Interaction of YZ• with its environment in acetate-treated photosystem II membranes and reaction center cores.” Journal of Physical Chemistry B 102: 8239–8247.CrossRefGoogle Scholar
  33. Enami, I., S. Kikuchi, T. Fukuda, H. Ohta and J.-R. Shen (1998). “Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, Cyanidium caldarium, as studied by release-reconstitution experiments.” Biochemistry 37: 2787–2793.PubMedCrossRefGoogle Scholar
  34. Force, D. A., D. W. Randall and R. D. Britt (1997). “Proximity of acetate, manganese, and exchangeable deuterons to Tyrosine YZ-dot in acetate-inhibited Photosystem II membranes: Implications for the direct involvement of YZ-dot in water-splitting.” Biochemistry 36: 12062–12070.PubMedCrossRefGoogle Scholar
  35. Ford, R. C. and M. C. W. Evans (1983). “Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.” FEBS Letters 160: 159–164.CrossRefGoogle Scholar
  36. Fork, D. C. (1972). “Oxygen electrode.” Methods in Enzymology 24: 113–122.PubMedCrossRefGoogle Scholar
  37. Ghanotakis, D. F., G. T. Babcock and C. F. Yocum (1984a). “Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations.” FEBS Letters 167: 127–130.CrossRefGoogle Scholar
  38. Ghanotakis, D. F., J. N. Topper, G. T. Babcock and C. F. Yocum (1984b). “Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2+ on the oxidizing side of Photosystem II.” FEBS Letters 170: 169–173.CrossRefGoogle Scholar
  39. Ghanotakis, D. F., G. T. Babcock and C. F. Yocum (1985). “On the role of water-soluble polypeptides (17, 23 kDa), Fcalcium and chloride in photosynthetic oxygen evolution.” FEBS Letters 192: 1–3.CrossRefGoogle Scholar
  40. Gorham, P. R. and K. A. Clendenning (1952). “Anionic stimulation of the Hill reaction in isolated chloroplasts.” Archives of Biochemistry and Biophysics 37: 199–223.PubMedCrossRefGoogle Scholar
  41. Grundmeier, A. and H. Dau (2012). “Structural models of the manganese complex of photosystem II and mechanistic implications.” Biochimica et Biophysica Acta 1817: 88–105.PubMedCrossRefGoogle Scholar
  42. Guskov, A., J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni and W. Saenger (2009). “Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride.” Nature Structural and Molecular Biology 16: 334–342.PubMedCrossRefGoogle Scholar
  43. Haddy, A. (2007). “EPR spectroscopy of the manganese cluster of photosystem II.” Photosynthesis Research 92: 357–368.PubMedCrossRefGoogle Scholar
  44. Haddy, A., W. R. Dunham, R. H. Sands and Roland Aasa (1992). “Multifrequency EPR investigations into the origin of the S2-state signal at g = 4 of the O2-evolving complex.” Biochimica et Biophysica Acta 1099: 25–34.PubMedCrossRefGoogle Scholar
  45. Haddy, A., J. A. Hatchell, R. A. Kimel and R. Thomas (1999). “Azide as a competitor of chloride in oxygen evolution by photosystem II.” Biochemistry 38: 6104–6110.PubMedCrossRefGoogle Scholar
  46. Haddy, A., R. A. Kimel and R. Thomas (2000). “Effects of azide on the S2 state EPR signals from photosystem II.” Photosynthesis Research 63: 35–45.PubMedCrossRefGoogle Scholar
  47. Hallahan, B. J., J. H. A. Nugent, J. T. Warden and M. C. W. Evans (1992). “Investigation of the origin of the “S3” EPR signal from the oxygen-evolving complex of Photosystem 2: The role of Tyrosine Z.” Biochemistry 31: 4562–4573.PubMedCrossRefGoogle Scholar
  48. Hasegawa, K., Y. Kimura and T.-a. Ono (2002). “Chloride cofactor in the photosynthetic oxygen-evolving complex studied by Fourier transform infrared spectroscopy.” Biochemistry 41: 13839–13850.PubMedCrossRefGoogle Scholar
  49. Haumann, M., M. Barra, P. Loja, S. Löscher, R. Krivanek, A. Grundmeier, L.-E. Andreasson and H. Dau (2006). “Bromide does not bind to the Mn4Ca complex in its S1 state in Cl-depleted and Br-reconstituted oxygen-evolving photosystem II: Evidence from X-ray absorption spectroscopy at the Br K-edge.” Biochemistry 45: 13101–13107.PubMedCrossRefGoogle Scholar
  50. Homann, P. H. (1985). “The association of functional anions with the oxygen-evolving center of chloroplasts.” Biochimica et Biophysica Acta 809: 311–319.CrossRefGoogle Scholar
  51. Homann, P. H. (1988a) “Structural effects of Cl and other anions on the water oxidizing complex of chloroplast photosystem II”. Plant Physiology 88, 194–199.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Homann, P. H. (1988b). “The chloride and calcium requirement of photosynthetic water oxidation: effects of pH.” Biochimica et Biophysica Acta 934: 1–13.CrossRefGoogle Scholar
  53. Homann, P. H. (2002). “Chloride and calcium in Photosystem II: from effects to enigma.” Photosynthesis Research 73: 169–175.PubMedCrossRefGoogle Scholar
  54. Ikeuchi, M. and Y. Inoue (1987). “Specific125I labeling of D1 (herbicide-binding protein).” FEBS Letters 210: 71–76.CrossRefGoogle Scholar
  55. Ikeuchi, M., H. Koike and Y. Inoue (1988). “Iodination of D1 (herbicide-binding protein) is coupled with photooxidation of125I associated with Cl-binding site in Photosystem-II water-oxidation system.” Biochimica et Biophysica Acta 932: 160–169.CrossRefGoogle Scholar
  56. Imaoka, A., K. Akabori, M. Yanagi, K. Izumi, Y. Toyoshima, A. Kawamori, H. Nakayama and J. Sato (1986). “Roles of three lumen-surface proteins in the formation of S2 state and 02 evolution in Photosystem II particles from spinach thylakoid membranes.” Biochimica et Biophysica Acta 848: 201–211.CrossRefGoogle Scholar
  57. Inoue-Kashino, N., Y. Kashino, K. Satoh, I. Terashima and H. B. Pakrasi (2005). “PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II.” Biochemistry 44: 12214–12228.PubMedCrossRefGoogle Scholar
  58. Itoh, S. and S. Uwano (1986). “Characteristics of the Cl action site in the O2 evolving reaction in PS II particles: Electrostatic interaction with ions.” Plant and Cell Physiology 27: 25–36.Google Scholar
  59. Itoh, S., C. T. Yerkes, Y. Koike, H. H. Robinson and A. R. Crofts (1984). “Effects of chloride depletion on electron donation from the water-oxidizing complex to the photosystem II reaction center as measured by the microsecond rise of chlorophyll fluorescence in isolated pea chloroplasts.” Biochimica et Biophysica Acta 766: 612–622.CrossRefGoogle Scholar
  60. Izawa, S., R. L. Heath and G. Hind (1969). “The role of chloride ion in photosynthesis. III. The effect of artificial electron donors upon electron transport.” Biochimica et Biophysica Acta 180: 388–398.PubMedCrossRefGoogle Scholar
  61. Katoh, H., S. Itoh, J.-R. Shen and M. Ikeuchi (2001). “Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1.” Plant and Cell Physiology 42: 599–607.PubMedCrossRefGoogle Scholar
  62. Katoh, S. (1972). “Inhibitors of electron transport associated with photosystem II in chloroplasts.” Plant and Cell Physiology 13: 273–286.CrossRefGoogle Scholar
  63. Kawakami, K., Y. Umena, N. Kamiya and J.-R. Shen (2009). “Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography.” Proceedings of the National Academy of Sciences of the United States of America 106: 8567–8572.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kawakami, K., Y. Umena, N. Kamiya and J.-R. Shen (2011). “Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 A resolution.” Journal of Photochemistry and Photobiology, B: Biology 104: 9–18.CrossRefGoogle Scholar
  65. Kawamoto, K., J. Mano and K. Asada (1995). “Photoproduction of the azidyl radical from the azide anion on the oxidizing side of Photosytem II and suppression of photooxidation of Tyrosine Z by the azidyl radical.” Plant and Cell Physiology 36: 1121–1129.CrossRefGoogle Scholar
  66. Kelley, P. and S. Izawa (1978). “The role of chloride ion in photosystem II: I. Effects of chloride ion on photosystem II electron transport and on hydroxylamine inhibition.” Biochimica et Biophysica Acta 502: 198–210.PubMedCrossRefGoogle Scholar
  67. Kirilovsky, D., M. Roncel, A. Boussac, A. Wilson, J. L. Zurita, J.-M. Ducruet, H. Bottin, M. Sugiura, J. M. Ortega and A. W. Rutherford (2004). “Cytochrome c550 in the cyanobacterium Thermosynechococcus elongatus.” Journal of Biological Chemistry 279: 52869–52880.PubMedCrossRefGoogle Scholar
  68. Klein, M. P., K. Sauer and V. K. Yachandra (1993). “Perspectives on the structure of the photosynthetic oxygen evolving manganese complex and its relation to the Kok cycle.” Photosynthesis Research 38: 265–277.PubMedCrossRefGoogle Scholar
  69. Kühne, H., V. A. Szalai and G. W. Brudvig (1999). “Competitive binding of acetate and chloride in Photosystem II.” Biochemistry 38: 6604–6613.PubMedCrossRefGoogle Scholar
  70. Kuntzleman, T. S. and A. Haddy (2009). “Fluoride inhibition of photosystem II and the effect of removal of the PsbQ subunit.” Photosynthesis Research 102: 7–19.PubMedCrossRefGoogle Scholar
  71. Kuwabara, T. and N. Murata (1982). “Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts.” Plant and Cell Physiology 23: 533–539.CrossRefGoogle Scholar
  72. Kuwabara, T. and N. Murata (1983). “Quantitative analysis of the inactivation of photosynthetic oxygen evolution and the release of polypeptides and manganese in the photosystem II particles of spinach chloroplast.” Plant and Cell Physiology 24: 741–747.CrossRefGoogle Scholar
  73. Lakshmi, K. V., S. S. Eaton, G. R. Eaton, H. A. Frank and G. W. Brudvig (1998). “Analysis of dipolar and exchange interactions between manganese and Tyrosine Z in the S2YZ-dot state of acetate-inhibited Photosystem II via EPR spectral simulations at X- and Q-bands.” Journal of Physical Chemistry B 102: 8327–8335.CrossRefGoogle Scholar
  74. Lakshmi, K. V., M. J. Reifler, D. A. Chisholm, J. Y. Wang, B. A. Diner and G. W. Brudvig (2002). “Correlation of the cytochrome c550 content of cyanobacterial Photosystem II with the EPR properties of the oxygen-evolving complex.” Photosynthesis Research 72: 175–189.PubMedCrossRefGoogle Scholar
  75. Lindberg, K. and L.-E. Andréasson (1996). “A one-site, two-state model for the binding of anions in photosystem II.” Biochemistry 35: 14259–14267.PubMedCrossRefGoogle Scholar
  76. Lindberg, K., T. Wydrzynski, T. Vänngård and L.-E. Andréasson (1990). “Slow release of chloride from36Cl-labeled photosystem II membranes.” FEBS Letters 264: 153–155.CrossRefGoogle Scholar
  77. Lindberg, K., T. Vänngård and L.-E. Andréasson (1993). “Studies of the slowly exchanging chloride in photosystem II of higher plants.” Photosynthesis Research 38: 401–408.PubMedCrossRefGoogle Scholar
  78. MacLachlan, D. J. and J. H. A. Nugent (1993). “Investigation of the S3 electron paramagnetic resonance signal from the oxygen-evolving complex of Photosystem 2: Effect of inhibition of oxygen evolution by acetate.” Biochemistry 32: 9772–9780.PubMedCrossRefGoogle Scholar
  79. Mavankal, G., D. C. McCain and T. M. Bricker (1986). “Effects of chloride on paramagnetic coupling of manganese in calcium chloride-washed photosystem II preparations.” FEBS Letters 202: 235–239.CrossRefGoogle Scholar
  80. McDermott, A. E., V. K. Yachandra, R. D. Guiles, J. L. Cole, S. L. Dexheimer, R. D. Britt, K. Sauer and M. P. Klein (1988). “Characterization of the manganese 02-evolving complex and the iron-quinone acceptor complex in photosystem II from a thermophilic cyanobacterium by electron paramagnetic resonance and X-ray absorption spectroscopy.” Biochemistry 27: 4021–4031PubMedCrossRefGoogle Scholar
  81. Miyao, M. and N. Murata (1983). “Partial disintegration and reconstitution of the photosynthetic oxygen evolution system.” Biochimica et Biophysica Acta 725: 87–93.CrossRefGoogle Scholar
  82. Miyao, M. and N. Murata (1984). “Calcium ions can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution.” FEBS Letters 168: 118–120.CrossRefGoogle Scholar
  83. Miyao, M. and N. Murata (1985). “The Cl effect on photosynthetic oxygen evolution: interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins.” FEBS Letters 180: 303–308.CrossRefGoogle Scholar
  84. Morgan, T. R., J. A. Shand, S. M. Clarke and J. J. Eaton-Rye (1998). “Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47.” Biochemistry 37: 14437–14449.PubMedCrossRefGoogle Scholar
  85. Murray, J. W., K. Maghlaoui, J. Kargul, N. Ishida, T.-L. Lai, A. W. Rutherford, M. Sugiura, A. Boussac and J. Barber (2008). “X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of photosystem II.” Energy and Environmental Science 1: 161–166.CrossRefGoogle Scholar
  86. Olesen, K. and L.-E. Andréasson (2003). “The function of the chloride ion in photosynthetic oxygen evolution.” Biochemistry 42: 2025–2035.PubMedCrossRefGoogle Scholar
  87. Ono, T.-A. and Y. Inoue (1986). “Effects of removal and reconstitution of the extrinsic 33, 24 and 16 kDa proteins on flash oxygen yield in Photosystem II particles.” Biochimica et Biophysica Acta 850: 380–389.CrossRefGoogle Scholar
  88. Ono, T.-A. and Y. Inoue (1988). “Abnormal S-state turnovers in NH3-binding Mn centers of photosynthetic O2 evolving system.” Archives of Biochemistry and Biophysics 264: 82–92.PubMedCrossRefGoogle Scholar
  89. Ono, T.-A. and Y. Inoue (1990). “Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II. A dark-stable EPR multiline signal and an unknown positive charge accumulator.” Biochimica et Biophysica Acta 1020: 269–277.CrossRefGoogle Scholar
  90. Ono, T.-A., J. L. Zimmermann, Y. Inoue and A. W. Rutherford (1986). “EPR evidence for a modified S-state transition in chloride-depleted photosystem II.” Biochimica et Biophysica Acta 851: 193–201.CrossRefGoogle Scholar
  91. Ono, T.-A., H. Nakayama, H. Gleiter, Y. Inoue and A. Kawamori (1987). “Modification of the properties of S2 state in photosynthetic O2-evolving center by replacement of chloride with other anions.” Archives of Biochemistry and Biophysics 256: 618–624.PubMedCrossRefGoogle Scholar
  92. Papageorgiou, G. C. and T. Lagoyanni (1991). “Interactions of iodide ions with isolate photosystem 2 particles.” Archives of Biochemistry and Biophysics 285: 339–343.PubMedCrossRefGoogle Scholar
  93. Peloquin, J. M. and R. D. Britt (2001). “EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster.” Biochimica et Biophysica Acta 1503: 96–111.PubMedCrossRefGoogle Scholar
  94. Peloquin, J. M., K. A. Campbell and R. D. Britt (1998). “55Mn pulsed ENDOR demonstrates that the Photosystem II “split” EPR signal arises from a magnetically-coupled mangano-tyrosyl complex.” Journal of the American Chemical Society 120: 6840–6841.CrossRefGoogle Scholar
  95. Philbrick, J. B., B. A. Diner and B. A. Zilinskas (1991). “Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing polypeptide of photosystem II.” Journal of Biological Chemistry 266:13370–13376PubMedGoogle Scholar
  96. Pokhrel, R. and G. W. Brudvig (2013). “Investigation of the inhibitory effect of nitrite on photosystem II.” Biochemistry 52: 3781–3789.PubMedCrossRefGoogle Scholar
  97. Pokhrel, R., I. L. McConnell and G. W. Brudvig (2011). “Chloride regulation of enzyme turnover: Application to the role of chloride in photosystem II.” Biochemistry 50: 2725–2734.PubMedCrossRefGoogle Scholar
  98. Pokhrel, R., R. J. Service, R. J. Debus and G. W. Brudvig (2013). “Mutation of Lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport.” Biochemistry 52: 4758–4773.PubMedCrossRefGoogle Scholar
  99. Popelkova, H. and C. F. Yocum (2007). “Current status of the role of Cl ion in the oxygen-evolving complex.” Photosynthesis Research 93: 111–121.PubMedCrossRefGoogle Scholar
  100. Popelkova, H., S. D. Betts, N. Lydakis-Symantiris, M. M. Im, E. Swenson and C. F. Yocum (2006). “Mutagenesis of basic residues R151 and R161 in manganese-stabilizing protein of photosystem II causes inefficient binding of chloride to the oxygen-evolving complex.” Biochemistry 45: 3107–3115.PubMedCrossRefGoogle Scholar
  101. Popelkova, H., A. Commet and C. F. Yocum (2009). “Asp157 is required for th function of PsbO, the photosystem II manganese stabilizing protein.” Biochemistry 48, 11920–11928.PubMedCrossRefGoogle Scholar
  102. Rachid, A. and P. H. Homann (1992). “Properties of iodide-activated photosynthetic water-oxidizing complexes.” Biochimica et Biophysica Acta 1101: 303–310.CrossRefGoogle Scholar
  103. Rivalta, I., M. Amin, S. Luber, S. Vassiliev, R. Pokhrel, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, D. Bruce, G. W. Brudvig, M. R. Gunner and V S. Batista (2011). “Structural-functional role of chloride in photosystem II.” Biochemistry 50: 6312–6315.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Roose, J. L., K. M. Wegener and H. B. Pakrasi (2007). “The extrinsic proteins of photosystem II.” Photosynthesis Research 92: 369–387.PubMedCrossRefGoogle Scholar
  105. Sanakis, Y., D. Petasis, V. Petrouleas and M Hendrich (1999). “Simultaneous binding of fluoride and NO to the nonheme iron of photosystem II: Quantitative EPR evidence for a weak exchange interaction between the semiquinone QA and the iron-nitrosyl complex.” Journal of the American Chemical Society 121: 9155–9164.CrossRefGoogle Scholar
  106. Sandusky, P. O. and C. F. Yocum (1983). “The mechanism of amine inhibition of the photosynthetic oxygen evolving complex.” FEBS Letters 162: 339–343.CrossRefGoogle Scholar
  107. Sandusky, P. O. and C. F. Yocum (1984). “The chloride requirement for photosynthetic oxygen evolution: analysis of the effects of chloride and other anions on amine inhibition of the oxygen-evolving complex.” Biochimica et Biophysica Acta 766: 603–611.CrossRefGoogle Scholar
  108. Sandusky, P. O. and C. F. Yocum (1986). “The chloride requirement for photosynthetic oxygen evolution: factors affecting nucleophilic displacement of chloride from the oxygen-evolving complex.” Biochimica et Biophysica Acta 849: 85–93.CrossRefGoogle Scholar
  109. Sauer, K., J. Yano and V. K. Yachandra (2008). “X-ray spectroscopy of the photosynthetic oxygen-evolving complex.” Coordination Chemistry Reviews 252: 318–335.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Saygin, Ö., S. Gerken, B. Meyer and H. T. Witt (1986). “Total recovery of O2 evolution and nanosecond reduction kinetics of chlorophyll-aII + (P-680+) after inhibition of water cleavage with acetate.” Photosynthesis Research 9: 71–78.PubMedCrossRefGoogle Scholar
  111. Shen, J.-R. and Y. Inoue (1993). “Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II.” Biochemistry 32: 1825–1832.PubMedCrossRefGoogle Scholar
  112. Shen, J.-R., M. Ikeuchi and Y. Inoue (1992). “Stoichiometric association of extrinsic cytochrome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus.” FEBS Letters 301: 145–149.PubMedCrossRefGoogle Scholar
  113. Shen, J.-R., M. Ikeuchi and Y. Inoue (1997). “Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803.” Journal of Biological Chemistry 272: 17821–17826.PubMedCrossRefGoogle Scholar
  114. Shen, J.-R., M. Qian, Y. Inoue and R. L. Burnap (1998). “Functional characterization of Synechocystis sp. PCC 6803 del-psbU and del-psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution.” Biochemistry 37: 1551–1558.PubMedCrossRefGoogle Scholar
  115. Shoji, M., H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen, T. Nakajima and K. Yamaguchi (2015). “Theoretical modelling of biomolecular systems I. Large-scale QM/MM calculations of hydrogen bonding networks of the oxygen evolving complex of photosystem II.” Molecular Physics 113: 359–384.CrossRefGoogle Scholar
  116. Sinclair, J. (1984). “The influence of anions on oxygen evolution by isolated spinach chloroplasts.” Biochimica et Biophysica Acta 764: 247–252.CrossRefGoogle Scholar
  117. Sivaraja, M., J. Tso and G. C. Dismukes (1989). “A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation.” Biochemistry 28: 9459–9464.PubMedCrossRefGoogle Scholar
  118. Stemler, A. and J. B. Murphy (1985). “Bicarbonate-reversible and irreversible inhibition of photosystem II by monovalent anions.” Plant Physiology 77: 974–977.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Strickler, M. A., L. M. Walker, W. Hillier and R. J. Debus (2005). “Evidence from biosynthetically incorporated strontium and FTIR difference spectroscopy that the C-terminus of the D1 polypeptide of photosystem II does not ligate calcium.” Biochemistry 44: 8571–8577.PubMedCrossRefGoogle Scholar
  120. Styring, S., M. Miyao and A. W. Rutherford (1987). “Formation and flash-dependent oscillation of the S2-state multiline EPR signal inan oxygen-evolving photosystem-ll preparation lacking the three extrinsic proteins in the oxygen-evolving system.” Biochimica et Biophysica Acta 890: 32–38.CrossRefGoogle Scholar
  121. Suga, M., F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago and J.-R. Shen (2015). “Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.” Nature (London) 517: 99–103.CrossRefGoogle Scholar
  122. Summerfield, T. C., J. A. Shand, F. K. Bentley and J. J. Eaton-Rye (2005a). “PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions.” Biochemistry 44: 805–815.PubMedCrossRefGoogle Scholar
  123. Summerfield, T. C., R. T. Winter and J. J. Eaton-Rye (2005b). “Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803.” Photosynthesis Research 84: 263–268.PubMedCrossRefGoogle Scholar
  124. Suzuki, H., J. Yu, T. Kobayashi, H. Nakanishi, P. J. Nixon and T. Noguchi (2013). “Functional roles of D2-Lys317 and the interacting chloride ion in the water oxidation reaction of photosystem II as revealed by Fourier transform infrared analysis.” Biochemistry 52: 4748–4757.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Szalai, V. A. and G. W. Brudvig (1996a). “Formation and decay of the S3 EPR signal species in acetate-inhibited photosystem II.” Biochemistry 35: 1946–1953.PubMedCrossRefGoogle Scholar
  126. Szalai, V. A. and G. W. Brudvig (1996b). “Reversible binding of nitric oxide to tyrosyl radicals in photosystem II. Nitric oxide quenches formation of the S3 EPR signal species in acetate-inhibited photosystem II.” Biochemistry 35: 15080–15087.PubMedCrossRefGoogle Scholar
  127. Szalai, V. A., H. Kühne, K. V. Lakshmi and G. W. Brudvig (1998). “Characterization of the interaction between manganese and tyrosine Z in acetate-inhibited photosystem II.” Biochemistry 37: 13594–13603.PubMedCrossRefGoogle Scholar
  128. Takahashi, Y. and S. Styring (1987). “A comparative study of the reduction of EPR signal IIslow by iodide and the iodo-labeling of the D2-protein in photosystem II.” FEBS Letters 223: 371–375.CrossRefGoogle Scholar
  129. Takahashi, Y., M.-a. Takahashi and K. Satoh (1986). “Identification of the site of iodide photooxidation in the photosystem II reaction center complex.” FEBS Letters 208: 347–351.CrossRefGoogle Scholar
  130. Tang, X.-S., D. W. Randall, D. A. Force, B. A. Diner and R. D. Britt (1996). “Manganese-tyrosine interaction in the Photosystem II oxygen-evolving complex.” Journal of the American Chemical Society 118: 7638–7639.CrossRefGoogle Scholar
  131. Theg, S. M., P. A. Jursinic and P. H. Homann (1984). “Studies on the mechanism of chloride action on photosynthetic water oxidation.” Biochimica et Biophysica Acta 766: 636–646.CrossRefGoogle Scholar
  132. Thornton, L. E., H. Ohkawa, J. L. Roose, Y. Kashino, N. Keren and H. B. Pakrasi (2004). “Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803.” Plant Cell 16: 2164–2175.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Umena, Y., K. Kawakami, J.-R. Shen and N. Kamiya (2011). “Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.” Nature (London) 473: 55–59.CrossRefGoogle Scholar
  134. van Gorkom, H. J. and C. F. Yocum (2005). The calcium and chloride cofactors. Photosystem II: The light-driven water: plastoquinone oxidoreductase. T. Wydrzynski and K. Satoh. The Netherlands, Springer: 307–327.Google Scholar
  135. van Vliet, P. and A. W. Rutherford (1996). “Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance.” Biochemistry 35: 1829–1839.PubMedCrossRefGoogle Scholar
  136. Velthuys, B. R. (1975). “Binding of the inhibitor NH3 to the oxygen-evolving apparatus of spinach chloroplasts.” Biochimica et Biophysica Acta 396: 392–401.PubMedCrossRefGoogle Scholar
  137. Vogt, L., D. J. Vinyard, S. Khan and G. W. Brudvig (2015). “Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks.” Current Opinion in Chemical Biology 25: 152–158.PubMedCrossRefGoogle Scholar
  138. Warburg, O. and W. Lüttgens (1944). “Weitere experimente zur kohlensaureassimilation.” Naturwissenschaften 40: 301.CrossRefGoogle Scholar
  139. Wincencjusz, H., H. J. van Gorkom and C. F. Yocum (1997). “The photosynthetic oxygen evolving complex requires chloride for its redox state S2-to-S3 and S3-to-S0 transitions but not for S0-to-S1 or S1-to-S2 transitions.” Biochemistry 36: 3663–3670.PubMedCrossRefGoogle Scholar
  140. Wincencjusz, H., C. F. Yocum and H. J. van Gorkom (1998). “S-state dependence of chloride binding affinities and exchange dynamics in the intact and polypeptide-depleted O2 evolving complex of photosystem II.” Biochemistry 37: 8595–8604.PubMedCrossRefGoogle Scholar
  141. Wincencjusz, H., C. F. Yocum and H. J. van Gorkom (1999). “Activating anions that replace Cl in the O2-evolving complex of photosystem II slow the kinetics of the terminal step in water oxidation and destabilize the S2 and S3 states.” Biochemistry 38: 3719–3725.PubMedCrossRefGoogle Scholar
  142. Yachandra, V. K., R. D. Guiles, K. Sauer and M. P. Klein (1986). “The state of manganese in the photosynthetic apparatus. 5. The chloride effect in photosynthetic oxygen evolution.” Biochimica et Biophysica Acta 850: 333–342.CrossRefGoogle Scholar
  143. Yachandra, V. K., K. Sauer and M. P. Klein (1996). “Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen.” Chemical Reviews 96: 2927–2950.PubMedCrossRefGoogle Scholar
  144. Yano, J. and V. K. Yachandra (2009). “X-ray absorption spectroscopy.” Photosynthesis Research 102: 241–254.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yocum, C. F. (2008). “The calcium and chloride requirements of the O2 evolving complex.” Coordination Chemistry Reviews 252: 296–305.CrossRefGoogle Scholar
  146. Yu, H., C. P. Aznar, X. Xu and R. D. Britt (2005). “Evidence that azide occupies the chloride binding site near the manganese cluster in photosystem II.” Biochemistry 44: 12022–12029.PubMedCrossRefGoogle Scholar
  147. Zimmermann, J.-L. and A. W. Rutherford (1984). “EPR studies of the oxygen-evolving enzyme of Photosystem II.” Biochimica et Biophysica Acta 767: 160–167.CrossRefGoogle Scholar
  148. Zimmermann, J.-L. and A. W. Rutherford (1986). “Electron paramagnetic resonance properties of the S2 state of the oxygen-evolving complex of photosystem II.” Biochemistry 25: 4609–4615.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alice Haddy
    • 1
    Email author
  • Vonda Sheppard
    • 1
  • Rachelle Johnson
    • 1
  • Eugene Chen
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations