Advertisement

Recombinant Light Harvesting Complexes: Views and Perspectives

  • Erica BelgioEmail author
  • Alexander V. Ruban
Chapter

Summary

This review introduces to the method of in vitro reconstitution of pigment-protein complexes of higher plants, a technique which allows for the assembly of functional antenna proteins starting from free pigments and bacterially-expressed apoprotein. After discussing the reconstitution method itself, the key elements required for it (xanthophylls and chlorophyll b) and the timescales of the process, a few examples of the achievements made by using recombinant proteins are presented. Site-directed mutagenesis of chlorophyll-binding residues of recombinant complexes provided an important contribution to the field of photosynthesis by allowing the identification of the transition energy levels of individual chromophores. Progress has also been made employing recombinant antenna complexes in photovoltaic applications (quantum dots and Ti2O catalyst), a recent and still largely unexplored field of research. Finally, the recent use of luminal loop mutants of LHCII for the study of the non-photochemical quenching (NPQ) mechanism, one of the most studied phenomena in photosynthesis, revealed insights into how NPQ is triggered by low pH. It is proposed that reconstituting the NPQ locus in vitro in liposomes with a natural thylakoid membrane lipid composition, containing purified/recombinant LHCII, minor antennae and PsbS in various combinations and concentrations may clarify how the NPQ mechanism works at a molecular level

Keywords

Pigment-protein reconstitution Site-directed mutagenesis Chlorophyll binding site Mixed sites Non-photochemical quenching Fluorescence Aggregation quenching Molecular switch Proteo-liposomes Artificial photosynthesis 

Abbreviations

CP

chlorophyll binding protein

D

aspartate

DCCD

dicyclohexylcarbodiimide

DM

dodecylmaltoside

E

glutamate

FFEM

freeze-fracture electron microscopy

G

glycine

H

histidine

HOMO

highest occupied molecular orbital

HPLC

high pressure liquid chromatography

IPTG

Isopropil-β-D-1-tiogalattopiranoside

LHCII

light harvesting complex II

LUMO

lowest unoccupied molecular orbital

Ni-NTA

Nickel- Nitrilotriacetic acid

NMR

Nuclear magnetic resonance

NPQ

non-photochemical quenching

OGP

Octyl β-D-glucopyranoside

PSII

photosystem II

Q

glutamine

QD

quantum dot

R

arginine

RT

room temperature

SDS

sodium-dodecyl sulphate

V

valine

W

tryptophan

WT

wild type

Y

tyrosine

Notes

Acknowledgements

This work was supported by The Leverhulme Trust Research Grant RPG-2012-478 awarded to AVR.

Conflict of Interest

None Declared.

References

  1. Anpo M, Yamashita H, Ichihashi Y, Ehara S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry 1995; 396: 21–26.CrossRefGoogle Scholar
  2. Ballottari M, Girardon J, Betterle N, Morosinotto T, Bassi R. Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5. J Biol Chem 2009; 285: 28309–28321.CrossRefGoogle Scholar
  3. Bassi R, Croce R, Cugini D, Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci 1999; 18: 10056–10061.CrossRefGoogle Scholar
  4. Belgio E, Casazza AP, Zucchelli G, Garlaschi FM, Jennings RC. Band shape heterogeneity of the low-energy chlorophylls of CP29: absence of mixed binding sites and excitonic interactions, Biochemistry 2010; 5: 882–92.CrossRefGoogle Scholar
  5. Belgio E, Johnson MP, Juric S, Ruban AV. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited state lifetime -both the maximum and the nonphotochemically quenched. Biophys J 2012; 102: 2761–2771.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belgio E, Duffy CDP, Ruban AV. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. PCCP 2013; 15: 12253–12261.CrossRefPubMedGoogle Scholar
  7. Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 2009; 284:15255–15266.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Casazza AP, Szczepaniak M, Müller MG, Zucchelli G, Holzwarth AR. Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II. BBA 2010; 1797: 1606–16.Google Scholar
  9. Cashmore AR. Structure and expression of a pea nuclear gene encoding a chlorophyll a/b binding polypeptide. Proc Natl Acad Sci 1994; 81: 2960–2964.CrossRefGoogle Scholar
  10. Connelly JP, Müller MG, Bassi R, Croce R, Holzwarth A.R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 1997; 36: 281–287.CrossRefPubMedGoogle Scholar
  11. Croce R, Weiss S, Bassi R. Carotenoid-binding sites in the major light-harvesting complex (LHCII) of higher plants. J Biol Chem 1999; 274: 29613–29623.CrossRefPubMedGoogle Scholar
  12. Feng X, Pan X, Li M, Pieper J, Chang W, Jankowiak R. Spectroscopic study of the light-harvesting CP29 antenna complex of Photosystem II – Part I. Phys Chem B 2013; 117: 6585–92.CrossRefGoogle Scholar
  13. Gilmore AM. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 1997; 99: 197–209.CrossRefGoogle Scholar
  14. Gilmore AM, Yamamoto HY. Dark induction of zeaxanthin-dependent non-photochemical fluorescence quenching mediated by ATP. PNAS 1992; 89: 1899–1903.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Giuffra E, Cugini D, Croce R, Bassi R. Reconstitution and Pigment Binding Protein of Recombinant CP29. Eur J Biochem 1996; 238: 112–120.CrossRefPubMedGoogle Scholar
  16. Giuffra E, Zucchelli G, Sandonà D, Croce R, Garlaschi FM, Bassi R, Jennings RC. Analysis of some optical properties of native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine the spectral forms. Biochemistry 1997. 36: 12984–12993.CrossRefPubMedGoogle Scholar
  17. Goodwin TW. The Biochemistry of the Carotenoids, Chapman & Hall, New York 1980.CrossRefGoogle Scholar
  18. Gudowska-Nowak E, Newton MD, Fajer J. Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 1990; 94: 5795–5801.CrossRefGoogle Scholar
  19. Hirs CHW. Reduction and S-carboxymethylation of proteins. In: Methods in Enzymology. Academic Press, New York, 1967; 11: 325–329.Google Scholar
  20. Hobe S, Förster R, Klingler J, Paulsen H. N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 1995; 34: 10224–10228.CrossRefPubMedGoogle Scholar
  21. Hobe S, Niemeier H, Bender A, Paulsen H. Carotenoid binding sites in LHCII – Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 2000; 267: 616–624.CrossRefPubMedGoogle Scholar
  22. Hobe S, Prytulla S, Kühlbrandt W, Paulsen H. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 2004; 13: 3423–3429.Google Scholar
  23. Hobe S, Röder S, Paulsen H. Biomimetic encapsulation and stabilization of a recombinant light-harvesting membrane protein complex. 12th International Symposium on Biomineralization 27–30 August 2013, Freiberg, Saxony/Germany.Google Scholar
  24. Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 2009; 489: 262–267.CrossRefGoogle Scholar
  25. Horn R, Paulsen H. Early steps in the assembly of light-harvesting chlorophyll a/b complex: time-resolved fluorescence measurements. J Biol Chem 2004; 279: 44400–6.CrossRefPubMedGoogle Scholar
  26. Horton P, Ruban AV, Rees D, Pascal A, Noctor GD, Young A. Control of the light-harvesting function of chloroplast membranes by the proton concentration in the thylakoid lumen: aggregation states of the LHCII complex and the role of zeaxanthin. FEBS Lett 1991; 292: 1–4.CrossRefPubMedGoogle Scholar
  27. Ilioaia C, Johnson MP, Horton P, Ruban AV. Induction of efficient energy dissipation in the isolated light harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 2008; 283: 29505–29512.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979; 277: 637–638.CrossRefGoogle Scholar
  29. Jennings RC, Engelmann E, Garlaschi F, Casazza AP, Zucchelli G. Photosynthesis and negative entropy production. Biochim Biophys Acta 2005; 1709: 251–5.Google Scholar
  30. Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 2011; 23: 1468–1479.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johnson, MP, Ruban AV. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in LHCII. J Biol Chem 2009; 284: 23592–23601.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kaneco S, Shimizu Y, Ohta K, Mizuno T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J Photochem Photobiol A: Chemistry 1998; 115: 223–226.CrossRefGoogle Scholar
  33. Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H, van Amerongen H. Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry 1999; 38: 6587–6596.CrossRefPubMedGoogle Scholar
  34. Krieger A, Moya I, Weis E. Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta 1992; 1102: 167–176.CrossRefGoogle Scholar
  35. Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J. 2012, ,102, 2669–2676.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee CW, Antoniou-Kourounioti R, Chi-Sheng Wu J, Murchie E, Maroto-Valer M, Jensen OE, Huang CW, Ruban AV. Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 utilisation 2013; submitted.Google Scholar
  37. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Ǻ resolution. Nature 2004; 6980: 287–92.CrossRefGoogle Scholar
  38. Mick V, Geister S, Paulsen H. Folding state of the lumenal loop determines the thermal stability of light-harvesting chlorophyll a/b protein (LHCIIb). Biochemistry 2004; 43: 14704–14711.CrossRefPubMedGoogle Scholar
  39. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. Far-red fluorescence: a direct spectroscopic marker for LHC II oligomer formation in non-photochemical quenching. FEBS Lett 2008; 582: 3625–3631.CrossRefPubMedGoogle Scholar
  40. Morosinotto T, Castelletti S, Breton J, Bassi R, Croce R. Mutation analysis of Lhca1 antenna complex. J Biol Chem 2002; 277: 36253–36261.CrossRefPubMedGoogle Scholar
  41. Müh F, Madjet ME, Renger T. Structure-Based Identification of Energy Sinks in Plant Light-Harvesting Complex II. J. Phys. Chem. B 2010; 114: 13517–13535.CrossRefPubMedGoogle Scholar
  42. Nabiev I, Rakovich A, Sukhanova A, Lukashev E, Zagidullin V, Pachenko V, Rakovich YP, Donegan JF, Rubin AB, Govorov AO. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew Chem 2010; 49: 7217–7221.CrossRefGoogle Scholar
  43. Nishigaki A, Ohshima S, Nakayama K, Okada M, Nagashima U. Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea photosystem II. Photochem Photobiol 2001; 73: 245–248.CrossRefPubMedGoogle Scholar
  44. Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 2008; 18: 309–15.CrossRefGoogle Scholar
  45. Pandit A, Reus M, Morosinotto T, Bassi R, Holzwarth AR, de Groot HJM. An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Biochem Biophys Acta 2013; 1827: 738–744.Google Scholar
  46. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban AV. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 2005; 436: 134–137.CrossRefPubMedGoogle Scholar
  47. Paulsen H, Rümler U, Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b binding protein over-expressed in Escherichia coli. Planta 1990; 181: 204–211.CrossRefPubMedGoogle Scholar
  48. Paulsen, H, Dockter C, Volkov A, Jeschke G. Folding and pigment binding of light-harvesting chlorophyll a/b protein. In: The Chloroplast. Advances in photosynthesis and respiration, Springer, Dordrecht, The Netherlands 2010; 31: 231–244.Google Scholar
  49. Petrou K, Belgio E, Ruban AV. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim Biophys Acta 2014, recently accepted.Google Scholar
  50. Phillip D, Ruban AV, Horton P, Asato A, Young AJ. Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure. Proc Natl Acad Sci 1996; 93: 1492–1497.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the lowest Qy state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: A hole burning study. Photochem Photobiol 2000; 71: 574–581.CrossRefPubMedGoogle Scholar
  52. Plumley FG, Schmidt GW. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci 1994; 84: 146–150.CrossRefGoogle Scholar
  53. Porra RJ, Thompson WA, Kriedmann PA. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 1989; 975: 384–394.Google Scholar
  54. Qinmiao S, Liangbi L, Dazhang M, Tingyun K. High efficient expression of Lhcb2 gene from pea in E. coli and reconstitution of its expressed product with pigment in vitro. Science China 2000; 43: 464–471.CrossRefGoogle Scholar
  55. Remelli R, Varotto C, Sandonà D, Croce R, Bassi R. Chlorophyll binding sites of monomeric light harvesting complex (LHCII) reconstituted in vitro: a mutation analysis of chromophore binding residues. J Biol Chem 1999; 274: 33510–33521.CrossRefPubMedGoogle Scholar
  56. Renge I, R Avarmaa. Specific solvation of chlorophyll a: solvent nucleophility, hydrogen bonding and steric effects on absorption spectra. Photochem Photobiol 1985; 42: 253–260.CrossRefGoogle Scholar
  57. Rogl H, Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 1999; 42: 16214–16222.CrossRefGoogle Scholar
  58. Ruban AV. The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting, Wiley-Blackwell, Chichester 2012.CrossRefGoogle Scholar
  59. Ruban AV, Rees D, Noctor GD, Young A, Horton P. Long wavelength chlorophyll species are accociated with amplification of high-energy-state excitation quenching in higher plants. Biochim Biophys Acta 1991; 1059: 355–360.CrossRefGoogle Scholar
  60. Ruban AV, Rees D, Pascal AA, Horton P. Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes II: the relationships between LHCII aggregation in vitro and qE in isolated thylakoids. BBA 1992; 1102: 39–44.Google Scholar
  61. Ruban AV, Young A, Horton P. Induction of nonphotochemical energy dissipation and absorbance changes in leaves; evidence for changes in the state of the light harvesting system of photosystem II in vivo. Plant Physiology 1993; 102: 741–750.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ruban AV, Young, AJ and Horton P. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II – an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 1996; 35: 674–678.CrossRefPubMedGoogle Scholar
  63. Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP. Characterisation of the aggregated state of the light harvesting complex of photosystem II by linear and circular dichroism spectroscopy. BBA 1997; 1321: 61–70.Google Scholar
  64. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007a; 450: 575–579.CrossRefPubMedGoogle Scholar
  65. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007b; 450, 575–578.CrossRefPubMedGoogle Scholar
  66. Ruban AV, Johnson MP, Duffy CPD. Photoprotective molecular switch in photosystem II. Biochim Biophys Acta 2012; 1817: 167–181.Google Scholar
  67. Sandonà D, Croce R, Pagano A, Crimi M, Bassi R. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1998; 1365: 207–214.CrossRefPubMedGoogle Scholar
  68. Shikanai T, Munekage Y, Shimizu K, Endo T, Hashimoto T. Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol 1999; 40: 1134–1142.CrossRefPubMedGoogle Scholar
  69. Storf S, Jansson S, Schmid VHR. Pigment binding, fluorescence properties, and oligomerization behavior of Lhca5, a novel light-harvesting protein. J Biol Chem 2005; 280: 5163–5168.CrossRefPubMedGoogle Scholar
  70. van Amerongen H, van Grondelle R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 2001; 105: 604–617.CrossRefGoogle Scholar
  71. van Oort B, van Hoek A, Ruban AV, van Amerongen H. Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J Phys Chem B 2007; 111: 7631–7637.CrossRefPubMedGoogle Scholar
  72. Walters RG, Ruban AV, Horton P. Light-harvesting complexes bound by dicyclohexylcarbodiimide during inhibition of protective energy dissipation. Eur J Biochem 1994; 226: 1063–69.CrossRefPubMedGoogle Scholar
  73. Werwie M, Xiangxing X, Haase M, Basche T, Paulsen H. Bio Serves Nano. Biological Light-Harvesting Complex as Energy Donor for Semiconductor Quantum Dots. Langmuir 2012; 28: 5810–5818.CrossRefPubMedGoogle Scholar
  74. Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc Natl Acad Sci 2013; 14: 5452–6.CrossRefGoogle Scholar
  75. Wu JCS. Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 2009; 13: 30–40.CrossRefGoogle Scholar
  76. Yamashita H., Nishiguchi H, Kamada N, Anpo M., Teraoka Y, Hatano H, Ehara S, Kikui K, Palmisano K, Sclafani A, Schiavello A, Fox MA. Photocatalytic reduction of CO2 with H2O on TiO2 and cu/TiO2 catalysts. Res Chem Intermed 1994; 20: 815–823.CrossRefGoogle Scholar
  77. Yang C, Kosemund K, Cornet C, Paulsen H. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 1999; 38: 16205–16213.CrossRefPubMedGoogle Scholar
  78. Yang C, Lambrev P, Chen Z, Jávorfi T, Kiss AZ, Paulsen H and Garab G. The negatively charged amino acids in the lumenal loop influence the pigment binding and conformation of the major light-harvesting chlorophyll a/b complex. Biochim Biophys Acta 2008; 1777: 1463–1470.Google Scholar
  79. Zucchelli G, Brogioli D, Casazza AP, Garlaschi FM, Jennings RC. Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms. Biophys J 2007; 93: 2240–2254.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Department of Autotrophic Microorganisms – ALGATECHInstitute of Microbiology ASCRTřeboňCzech Republic

Personalised recommendations