Skip to main content

Recombinant Light Harvesting Complexes: Views and Perspectives

  • Chapter
  • First Online:
Book cover Photosynthesis: Structures, Mechanisms, and Applications

Summary

This review introduces to the method of in vitro reconstitution of pigment-protein complexes of higher plants, a technique which allows for the assembly of functional antenna proteins starting from free pigments and bacterially-expressed apoprotein. After discussing the reconstitution method itself, the key elements required for it (xanthophylls and chlorophyll b) and the timescales of the process, a few examples of the achievements made by using recombinant proteins are presented. Site-directed mutagenesis of chlorophyll-binding residues of recombinant complexes provided an important contribution to the field of photosynthesis by allowing the identification of the transition energy levels of individual chromophores. Progress has also been made employing recombinant antenna complexes in photovoltaic applications (quantum dots and Ti2O catalyst), a recent and still largely unexplored field of research. Finally, the recent use of luminal loop mutants of LHCII for the study of the non-photochemical quenching (NPQ) mechanism, one of the most studied phenomena in photosynthesis, revealed insights into how NPQ is triggered by low pH. It is proposed that reconstituting the NPQ locus in vitro in liposomes with a natural thylakoid membrane lipid composition, containing purified/recombinant LHCII, minor antennae and PsbS in various combinations and concentrations may clarify how the NPQ mechanism works at a molecular level

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CP:

chlorophyll binding protein

D:

aspartate

DCCD:

dicyclohexylcarbodiimide

DM:

dodecylmaltoside

E:

glutamate

FFEM:

freeze-fracture electron microscopy

G:

glycine

H:

histidine

HOMO:

highest occupied molecular orbital

HPLC:

high pressure liquid chromatography

IPTG:

Isopropil-β-D-1-tiogalattopiranoside

LHCII:

light harvesting complex II

LUMO:

lowest unoccupied molecular orbital

Ni-NTA:

Nickel- Nitrilotriacetic acid

NMR:

Nuclear magnetic resonance

NPQ:

non-photochemical quenching

OGP:

Octyl β-D-glucopyranoside

PSII:

photosystem II

Q:

glutamine

QD:

quantum dot

R:

arginine

RT:

room temperature

SDS:

sodium-dodecyl sulphate

V:

valine

W:

tryptophan

WT:

wild type

Y:

tyrosine

References

  • Anpo M, Yamashita H, Ichihashi Y, Ehara S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry 1995; 396: 21–26.

    Article  Google Scholar 

  • Ballottari M, Girardon J, Betterle N, Morosinotto T, Bassi R. Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5. J Biol Chem 2009; 285: 28309–28321.

    Article  Google Scholar 

  • Bassi R, Croce R, Cugini D, Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci 1999; 18: 10056–10061.

    Article  Google Scholar 

  • Belgio E, Casazza AP, Zucchelli G, Garlaschi FM, Jennings RC. Band shape heterogeneity of the low-energy chlorophylls of CP29: absence of mixed binding sites and excitonic interactions, Biochemistry 2010; 5: 882–92.

    Article  Google Scholar 

  • Belgio E, Johnson MP, Juric S, Ruban AV. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited state lifetime -both the maximum and the nonphotochemically quenched. Biophys J 2012; 102: 2761–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belgio E, Duffy CDP, Ruban AV. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. PCCP 2013; 15: 12253–12261.

    Article  CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 2009; 284:15255–15266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casazza AP, Szczepaniak M, Müller MG, Zucchelli G, Holzwarth AR. Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II. BBA 2010; 1797: 1606–16.

    Google Scholar 

  • Cashmore AR. Structure and expression of a pea nuclear gene encoding a chlorophyll a/b binding polypeptide. Proc Natl Acad Sci 1994; 81: 2960–2964.

    Article  Google Scholar 

  • Connelly JP, Müller MG, Bassi R, Croce R, Holzwarth A.R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 1997; 36: 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Weiss S, Bassi R. Carotenoid-binding sites in the major light-harvesting complex (LHCII) of higher plants. J Biol Chem 1999; 274: 29613–29623.

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Pan X, Li M, Pieper J, Chang W, Jankowiak R. Spectroscopic study of the light-harvesting CP29 antenna complex of Photosystem II – Part I. Phys Chem B 2013; 117: 6585–92.

    Article  CAS  Google Scholar 

  • Gilmore AM. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 1997; 99: 197–209.

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY. Dark induction of zeaxanthin-dependent non-photochemical fluorescence quenching mediated by ATP. PNAS 1992; 89: 1899–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuffra E, Cugini D, Croce R, Bassi R. Reconstitution and Pigment Binding Protein of Recombinant CP29. Eur J Biochem 1996; 238: 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Giuffra E, Zucchelli G, Sandonà D, Croce R, Garlaschi FM, Bassi R, Jennings RC. Analysis of some optical properties of native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine the spectral forms. Biochemistry 1997. 36: 12984–12993.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TW. The Biochemistry of the Carotenoids, Chapman & Hall, New York 1980.

    Book  Google Scholar 

  • Gudowska-Nowak E, Newton MD, Fajer J. Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 1990; 94: 5795–5801.

    Article  CAS  Google Scholar 

  • Hirs CHW. Reduction and S-carboxymethylation of proteins. In: Methods in Enzymology. Academic Press, New York, 1967; 11: 325–329.

    Google Scholar 

  • Hobe S, Förster R, Klingler J, Paulsen H. N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 1995; 34: 10224–10228.

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Niemeier H, Bender A, Paulsen H. Carotenoid binding sites in LHCII – Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 2000; 267: 616–624.

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W, Paulsen H. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 2004; 13: 3423–3429.

    Google Scholar 

  • Hobe S, Röder S, Paulsen H. Biomimetic encapsulation and stabilization of a recombinant light-harvesting membrane protein complex. 12th International Symposium on Biomineralization 27–30 August 2013, Freiberg, Saxony/Germany.

    Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 2009; 489: 262–267.

    Article  Google Scholar 

  • Horn R, Paulsen H. Early steps in the assembly of light-harvesting chlorophyll a/b complex: time-resolved fluorescence measurements. J Biol Chem 2004; 279: 44400–6.

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal A, Noctor GD, Young A. Control of the light-harvesting function of chloroplast membranes by the proton concentration in the thylakoid lumen: aggregation states of the LHCII complex and the role of zeaxanthin. FEBS Lett 1991; 292: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Ilioaia C, Johnson MP, Horton P, Ruban AV. Induction of efficient energy dissipation in the isolated light harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 2008; 283: 29505–29512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979; 277: 637–638.

    Article  CAS  Google Scholar 

  • Jennings RC, Engelmann E, Garlaschi F, Casazza AP, Zucchelli G. Photosynthesis and negative entropy production. Biochim Biophys Acta 2005; 1709: 251–5.

    Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 2011; 23: 1468–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, MP, Ruban AV. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in LHCII. J Biol Chem 2009; 284: 23592–23601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneco S, Shimizu Y, Ohta K, Mizuno T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J Photochem Photobiol A: Chemistry 1998; 115: 223–226.

    Article  CAS  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H, van Amerongen H. Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry 1999; 38: 6587–6596.

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Moya I, Weis E. Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta 1992; 1102: 167–176.

    Article  CAS  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J. 2012, ,102, 2669–2676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CW, Antoniou-Kourounioti R, Chi-Sheng Wu J, Murchie E, Maroto-Valer M, Jensen OE, Huang CW, Ruban AV. Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 utilisation 2013; submitted.

    Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Ǻ resolution. Nature 2004; 6980: 287–92.

    Article  Google Scholar 

  • Mick V, Geister S, Paulsen H. Folding state of the lumenal loop determines the thermal stability of light-harvesting chlorophyll a/b protein (LHCIIb). Biochemistry 2004; 43: 14704–14711.

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. Far-red fluorescence: a direct spectroscopic marker for LHC II oligomer formation in non-photochemical quenching. FEBS Lett 2008; 582: 3625–3631.

    Article  CAS  PubMed  Google Scholar 

  • Morosinotto T, Castelletti S, Breton J, Bassi R, Croce R. Mutation analysis of Lhca1 antenna complex. J Biol Chem 2002; 277: 36253–36261.

    Article  CAS  PubMed  Google Scholar 

  • Müh F, Madjet ME, Renger T. Structure-Based Identification of Energy Sinks in Plant Light-Harvesting Complex II. J. Phys. Chem. B 2010; 114: 13517–13535.

    Article  PubMed  Google Scholar 

  • Nabiev I, Rakovich A, Sukhanova A, Lukashev E, Zagidullin V, Pachenko V, Rakovich YP, Donegan JF, Rubin AB, Govorov AO. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew Chem 2010; 49: 7217–7221.

    Article  Google Scholar 

  • Nishigaki A, Ohshima S, Nakayama K, Okada M, Nagashima U. Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea photosystem II. Photochem Photobiol 2001; 73: 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 2008; 18: 309–15.

    Article  Google Scholar 

  • Pandit A, Reus M, Morosinotto T, Bassi R, Holzwarth AR, de Groot HJM. An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Biochem Biophys Acta 2013; 1827: 738–744.

    Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban AV. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 2005; 436: 134–137.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H, Rümler U, Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b binding protein over-expressed in Escherichia coli. Planta 1990; 181: 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, H, Dockter C, Volkov A, Jeschke G. Folding and pigment binding of light-harvesting chlorophyll a/b protein. In: The Chloroplast. Advances in photosynthesis and respiration, Springer, Dordrecht, The Netherlands 2010; 31: 231–244.

    CAS  Google Scholar 

  • Petrou K, Belgio E, Ruban AV. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim Biophys Acta 2014, recently accepted.

    Google Scholar 

  • Phillip D, Ruban AV, Horton P, Asato A, Young AJ. Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure. Proc Natl Acad Sci 1996; 93: 1492–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the lowest Qy state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: A hole burning study. Photochem Photobiol 2000; 71: 574–581.

    Article  CAS  PubMed  Google Scholar 

  • Plumley FG, Schmidt GW. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci 1994; 84: 146–150.

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PA. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 1989; 975: 384–394.

    CAS  Google Scholar 

  • Qinmiao S, Liangbi L, Dazhang M, Tingyun K. High efficient expression of Lhcb2 gene from pea in E. coli and reconstitution of its expressed product with pigment in vitro. Science China 2000; 43: 464–471.

    Article  Google Scholar 

  • Remelli R, Varotto C, Sandonà D, Croce R, Bassi R. Chlorophyll binding sites of monomeric light harvesting complex (LHCII) reconstituted in vitro: a mutation analysis of chromophore binding residues. J Biol Chem 1999; 274: 33510–33521.

    Article  CAS  PubMed  Google Scholar 

  • Renge I, R Avarmaa. Specific solvation of chlorophyll a: solvent nucleophility, hydrogen bonding and steric effects on absorption spectra. Photochem Photobiol 1985; 42: 253–260.

    Article  CAS  Google Scholar 

  • Rogl H, Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 1999; 42: 16214–16222.

    Article  Google Scholar 

  • Ruban AV. The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting, Wiley-Blackwell, Chichester 2012.

    Book  Google Scholar 

  • Ruban AV, Rees D, Noctor GD, Young A, Horton P. Long wavelength chlorophyll species are accociated with amplification of high-energy-state excitation quenching in higher plants. Biochim Biophys Acta 1991; 1059: 355–360.

    Article  Google Scholar 

  • Ruban AV, Rees D, Pascal AA, Horton P. Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes II: the relationships between LHCII aggregation in vitro and qE in isolated thylakoids. BBA 1992; 1102: 39–44.

    CAS  Google Scholar 

  • Ruban AV, Young A, Horton P. Induction of nonphotochemical energy dissipation and absorbance changes in leaves; evidence for changes in the state of the light harvesting system of photosystem II in vivo. Plant Physiology 1993; 102: 741–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban AV, Young, AJ and Horton P. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II – an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 1996; 35: 674–678.

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP. Characterisation of the aggregated state of the light harvesting complex of photosystem II by linear and circular dichroism spectroscopy. BBA 1997; 1321: 61–70.

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007a; 450: 575–579.

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007b; 450, 575–578.

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CPD. Photoprotective molecular switch in photosystem II. Biochim Biophys Acta 2012; 1817: 167–181.

    Google Scholar 

  • Sandonà D, Croce R, Pagano A, Crimi M, Bassi R. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1998; 1365: 207–214.

    Article  PubMed  Google Scholar 

  • Shikanai T, Munekage Y, Shimizu K, Endo T, Hashimoto T. Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol 1999; 40: 1134–1142.

    Article  CAS  PubMed  Google Scholar 

  • Storf S, Jansson S, Schmid VHR. Pigment binding, fluorescence properties, and oligomerization behavior of Lhca5, a novel light-harvesting protein. J Biol Chem 2005; 280: 5163–5168.

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen H, van Grondelle R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 2001; 105: 604–617.

    Article  Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H. Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J Phys Chem B 2007; 111: 7631–7637.

    Article  PubMed  Google Scholar 

  • Walters RG, Ruban AV, Horton P. Light-harvesting complexes bound by dicyclohexylcarbodiimide during inhibition of protective energy dissipation. Eur J Biochem 1994; 226: 1063–69.

    Article  CAS  PubMed  Google Scholar 

  • Werwie M, Xiangxing X, Haase M, Basche T, Paulsen H. Bio Serves Nano. Biological Light-Harvesting Complex as Energy Donor for Semiconductor Quantum Dots. Langmuir 2012; 28: 5810–5818.

    Article  CAS  PubMed  Google Scholar 

  • Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc Natl Acad Sci 2013; 14: 5452–6.

    Article  Google Scholar 

  • Wu JCS. Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 2009; 13: 30–40.

    Article  CAS  Google Scholar 

  • Yamashita H., Nishiguchi H, Kamada N, Anpo M., Teraoka Y, Hatano H, Ehara S, Kikui K, Palmisano K, Sclafani A, Schiavello A, Fox MA. Photocatalytic reduction of CO2 with H2O on TiO2 and cu/TiO2 catalysts. Res Chem Intermed 1994; 20: 815–823.

    Article  CAS  Google Scholar 

  • Yang C, Kosemund K, Cornet C, Paulsen H. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 1999; 38: 16205–16213.

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lambrev P, Chen Z, Jávorfi T, Kiss AZ, Paulsen H and Garab G. The negatively charged amino acids in the lumenal loop influence the pigment binding and conformation of the major light-harvesting chlorophyll a/b complex. Biochim Biophys Acta 2008; 1777: 1463–1470.

    Google Scholar 

  • Zucchelli G, Brogioli D, Casazza AP, Garlaschi FM, Jennings RC. Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms. Biophys J 2007; 93: 2240–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Leverhulme Trust Research Grant RPG-2012-478 awarded to AVR.

Conflict of Interest

None Declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Belgio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Belgio, E., Ruban, A.V. (2017). Recombinant Light Harvesting Complexes: Views and Perspectives. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_3

Download citation

Publish with us

Policies and ethics