Skip to main content

Nitric Oxide Mediated Effects on Chloroplasts

  • Chapter
  • First Online:
Photosynthesis: Structures, Mechanisms, and Applications

Summary

Nitric oxide (NO) is emerging as a signaling molecule in plants. Its metabolism, site and mode of action in chloroplasts are still not clear. Chloroplasts are emerging as an alternative site for NO synthesis in plants. However, exogenous NO donors show direct evidence on the action of this molecule on chloroplasts under stress as well non-stress conditions. Nitric oxide is also implicated in the development and senescence of the organelle. The effects of NO on chloroplasts, particularly on photosynthetic and antioxidative processes are described. The target sites and probable sites of action are enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PSI:

photosystem I

PSII:

photosystem II

LHCII:

light-harvesting chlorophyll a/b complex of PSII

GSNO:

S-nitrosoglutathione

GSSG:

glutathione disulphide

NO:

nitric oxide

qL:

coefficient of photochemical fluorescence quenching assuming interconnected PSII antennae

qP:

coefficient of photochemical fluorescence quenching assuming non-interconnected PSII antennae

NPQ:

non-photochemical quenching

Rubisco:

ribulose-1,5-bisphosphate carboxylase

PTIO:

2-phenyl-4,4,5,5-tetramentyl-imidazoline-1-oxyl-3-oxide

NOS:

nitric oxide synthase

L-NNA:

Nω-nitro-L-arginine

SNP:

sodium nitropruside

OEC:

oxygen-evolving complex

CPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295

    Article  CAS  PubMed  Google Scholar 

  • Apostolova EL, Dobrikova AG (2010) Effect of high temperature and UV-A radiation on the photosystem II. In: Pessarakli M (ed) Handbook of Plant and Crop Stress, 3rd ed. CRC Press, BocaRaton, pp 577–591

    Google Scholar 

  • Apostolova EL, Dobrikova AG, Ivanova PI, Petkanchin IB, Taneva SG (2006) Relationship between the organization of the PSII supercomplex and the functions of the photosynthetic apparatus. J. Photochem Photobiol B 83:114–122

    Article  CAS  Google Scholar 

  • Apostolova EL, Dobrikova AG, Rashkov GD, Dankov KG, Vladkova RS, Misra AN (2011) Prolonged sensitivity of immobilized thylakoid membranes in cross-linked matrix to atrazine. Sens Acuat B 156:140–146

    Article  CAS  Google Scholar 

  • Arasimowicz M, Floryszak J (2007) Nitric oxide as a bioactive signaling molecule in plant stress response. Plant Science 172:876–887

    Article  CAS  Google Scholar 

  • Arellano JB, Lázaro JJ, López-Gorgé J, Barón M (1995) The donor side of Photosystem II as the copper-inhibitory binding site. Photosynth Res 45:127–134

    Article  CAS  PubMed  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Barón M, Arellano JB, López-Gorgé J (1995) Copper and photosystem II: A controversial relationship. Physiol Plant 94:174–180

    Article  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in Barley chloroplast development. Plant Physiol 89:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (1999a) Is nitric oxide toxic or protective? Trends in Plant Science 4:299–300

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999b) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001a) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001b) Nitric oxide: A non-traditional regulator of plant growth. Trends in Plant Sci 6:508–509

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photooxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25:737–748

    Article  CAS  Google Scholar 

  • Biswal AK, Dilnawaz F, David KAV, Ramaswamy NK, Misra AN (2001) Increase in the intensity of thermoluminescence Q-band during leaf ageing is due to a block in the electron transfer from QA to QB. Luminescence 16:309–313

    Article  CAS  PubMed  Google Scholar 

  • Boucher N, Carpentier R (1999) Heat-stress stimulation of oxygen uptake by Photosystem I involves the reduction of superoxide radicals by specific electron donors. Photosynth Res 59:167–174

    Article  CAS  Google Scholar 

  • Britt RD (1996) Oxygen evolution, In Ort DR, Yocum CF (eds) Advances in Photosynthesis: Oxygenic Photosynthesis, The Light Reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 137–164

    Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189: 415–427

    Article  CAS  PubMed  Google Scholar 

  • Cha LS, McRae DG, Thompson JE (1982) Light-dependence of paraquat-initiated membrane deterioration in bean plants. Evidence for the involvement of superoxide. Physiol Plant 56:492–499

    Article  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocãna A, Carreras M, Gómez-Rodríguez V, Pedrajas JR, Begara FJ, Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces anitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Chang HL, Hsu YT, Kang CY, Lee TM (2013) Nitric Oxide down-regulation of carotenoid synthesis and photosystem II activity in relation to very high light-induced singlet oxygen production and oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol 58:1296–1315

    Article  CAS  Google Scholar 

  • Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocãna A, Valderrama R, Palma JM, Carreras A, Begara FJ, Morales JC, Airaki M, del Río LA, Barroso JB (2008a) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, del Río LA, Barroso JB (2008b) Post-translational modifications mediated by reactive nitrogen species: Nitrosative stress responses or components of signal transduction pathways? Plant Signaling Behaviour 3:301–303

    Article  Google Scholar 

  • Dankov K, Taneva S, Apostolova EL (2009) Freeze-thaw damage of photosynthetic apparatus. Effect of the organization of LHCII-PSII supercomplex. Comp Rend Acad Bulg Sci 62:1103–1110

    CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) New role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Nat Acad Sci, USA 99:16314–16318

    Article  CAS  Google Scholar 

  • Dilnawaz F, Mahapatra P, Misra M, Ramaswamy NK, Misra AN (2001) The distinctive pattern of photosystem II activity, photosynthetic pigment accumulation and ribulose-1, 5-bisphosphate carboxylase/oxygenase content of chloroplasts along the axis of primary wheat leaf lamina. Photosynthetica 39:557–563

    Article  CAS  Google Scholar 

  • Diner BA, Petrouleas V (1990) Formation by NO of nitrosyl adducts of redox components of the Photosystem II reaction center. II: Evidence that HCO3−/CO2 binds to the acceptor-side non-heme iron. Biochim Biophys Acta 1015:141–149

    Article  CAS  Google Scholar 

  • Dobrikova AG, Krasteva V, Apostolova EL (2013) Damage and protection of the photosynthetic apparatus from UV-B radiation I. Effect of ascorbate. J Plant Physiol 170:251–257

    Article  CAS  PubMed  Google Scholar 

  • Draber W, Tietjen K, Kluth JF, Trebst A (1991) Herbicides in photosynthesis research. Angew Chem 30:1621–1633

    Article  Google Scholar 

  • Ferreira LC, Cataneo AC, Remaeh LMR, Corniani N, Fumis TDF, Souza YAD, Scavroni J, Soares BJA (2010) Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pest Biochem Physiol 97:47–54

    Article  CAS  Google Scholar 

  • Ferreira LC, Cataneo AC, Remaeh LMR, Búfalo J, Scavroni J, Andréo-Souza Y, Cechin I, Soares BJA (2011) Morphological and physiological alterations induced by lactofen in soybean leaves are reduced with nitric oxide. Planta Daninha 29:837–847

    Article  Google Scholar 

  • Finazzi G, Johnson GN, Dall.osto L, Joliot P, Wollman FA, Bassi RA (2004) Zeaxanthin-independent non photochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci, USA 101:12375–12380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  • Galatro A, Puntarulo S, Guiamet JJ, Simontacchi M (2013) Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiol Biochem 66:26–33

    Article  CAS  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinger A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: A generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Goussias C, Deligiannakis Y, Sanakisk Y, Ioannidis N, Petrouleas V (2002) Probing subtle coordination changes in the iron-quinone complex of photosystem II during charges separation by the use of NO. Biochemistry 41:15212–15223

    Article  CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends in Plant Science 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Liebisch P, Müller C (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021

    Article  CAS  PubMed  Google Scholar 

  • Hill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmospheric Environ 4:341–348

    Article  CAS  Google Scholar 

  • Huang X, Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  PubMed  Google Scholar 

  • Hung KT, Chang CJ, Kao CH (2002) Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 159:159–166

    Article  CAS  Google Scholar 

  • Ioannidis N, Schansker G, Barynin VV, Petrouleas V (2000) Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: A comparative study. J Biol Inorg Chem 5:354–363

    Article  CAS  PubMed  Google Scholar 

  • Ivanova PI, Dobrikova AG, Taneva SG, Apostolova EL (2008) Sensitivity of the photosynthetic apparatus to UV-A radiation: a role of light-harvesting complex II – photosystem II supercomplex organization, Radiat Environ Biophys 47:169–177

    Article  CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi P, Misra AN, Nayak L, Biswal B (2013) Response of mature, developing and senescing chloroplast to environmental stress. In: Advances in Photosynthesis and Respiration, Volume 36. Springer, Dordrecht, pp 641–668

    Google Scholar 

  • Khangulov SV, Barynin VV, Antonyuk-Barynina SV (1990) Manganese containing catalase from Thermus thermophilus peroxide-induced redox transformation of manganese ions in the presence of specific inhibitor of catalase activity. Biochim Biophys Acta 1020:25–33

    Article  CAS  Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmosph Environ 13:537–542

    Article  CAS  Google Scholar 

  • Kopyra M, Gwozdz EA (2004) The role of nitric oxide in plant growth regulation and responses to abiotic stress. Acta Physiol Plant 26:459–472

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Krasylenko YA, Yemets AI, Blume YB (2010) Functional role of nitric oxide in plants. Russian J Plant Physiol 57:451–461

    Article  CAS  Google Scholar 

  • Laxalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. European J Plant Pathol 103:643–651

    Article  CAS  Google Scholar 

  • Lee U, Wie C, Fernández M, Feelisch BO, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis, Plant Cell 80:786–802

    Article  CAS  Google Scholar 

  • Lepistö A, Rintamäki E (2012) Coordination of plastid and light signaling pathways upon development of Arabidopsis leaves under various photoperiods. Mol Plant 5:799–816

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y (1997) Effect of stress nitric oxide (NO): Interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity. Plant Physiol Biochem 35:573–579

    CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas – nitric oxide (NO•) – as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Leterrier M, Airaki M, Palma J, Chaki M, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pol 166:136–143

    Article  CAS  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: A critical balance for cell fate. Plant Cell Environ 31:1606–1619

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH, Rai L, Soeder CJ (2000) Impact of physiological stresses on nitric oxide formation by green alga, Scenedesmus obliquus. J Microbiol Biotechnol 10:300–306

    CAS  Google Scholar 

  • Martinez GR, Mascio PD, Bonini MG, Augusto O, Briviba K, Sies H (2000) Peroxynitrite does not decompose to singlet oxygen (1gO2) and nitroxyl (NO-). Proc Nat Acad Sci, USA 97:10307–10312

    Article  CAS  Google Scholar 

  • Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecule target for diphenyl ether herbicides. Biochem J 260:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: A synergistic signalling approach. J Stress Physiol Biochem 7:34–74

    Google Scholar 

  • Mishina TE, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    Article  CAS  PubMed  Google Scholar 

  • Misra AN, Biswal UC (1980) Effect of phytohormones on the chlorophyll degradation during aging of chloroplasts in vivo and in vitro. Protoplasma 105:1–8

    Article  CAS  Google Scholar 

  • Misra AN, Biswal UC (1982) Differential changes in the electron transport properties of chloroplasts during aging of attached and detached leaves, and of isolated chloroplasts. Plant Cell Environ 5:27–30

    CAS  Google Scholar 

  • Misra AN, Misra M (1986) Effect of temperature on senescing rice leaves. I. Photoelectron transport activity of chloroplasts. Plant Science 46:1–4

    Article  Google Scholar 

  • Misra AN, Misra M (1987) Effect of age and rehydration on greening of wheat leaves. Plant Cell Physiol 28:47–51

    CAS  Google Scholar 

  • Misra AN, Ramaswamy NK, Desai TS (1997) Thermoluminescence studies on photoinhibition of pothos leaf discs at chilling, room and high temperature. J Photochem. Photobiol B: Biology 38:164–168

    Article  CAS  Google Scholar 

  • Misra AN, Srivastava A,; Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Misra AN, Latowski D, Strzalka K (2006) The xanthophylls cycle activity in kidney bean and cabbage leaves under salinity stress. Russian J Plant Physiol 53:102–109

    Article  CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2010a) Nitric oxide biochemistry, mode of action and signalling in plants. J Med Plants Res 4:2729–2749

    CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2010b) Nitric oxide: An ubiquitous signaling molecule with diverse role in plants. African J Plant Sci 5:57–74

    Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide ameliorates stress responses in plants. Plant Soil Env 57:95–100

    CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2012) Nitric oxide signaling during senescence and programmed cell death in leaves. In: Ekinci D (ed) Chemical Biology, Intech Open. pp 159–186

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, strimal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of Photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Ordog A, Wodala B, Rozsavolgyi T, Tari I, Horvath F (2013) Regulation of guard cell photosynthetic electron transport by nitric oxide. J Exp Bot 64:1357–1366.

    Article  PubMed  CAS  Google Scholar 

  • Palavan-Unsal N, Arisan D (2009) Nitric oxide signaling in plants. Bot Res 75:203–229

    Google Scholar 

  • Penner-Hahn JE, Yocum CF (2005) The photosynthesis “oxygen clock” gets a new number. Science 310:982–983

    Article  CAS  PubMed  Google Scholar 

  • Petrouleas V, Diner BA (1990) Formation by NO of nitrosyl adducts of redox components of the Photosystem II reaction center. I. NO binds to the acceptor-side non-heme iron. Biochim Biophys Acta 1015:131–140

    Article  CAS  Google Scholar 

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad MNV (ed.) Heavy metal stress in plants: From biomolecules to ecosystems,. 2004. Springer-Verlag, Berlin-Heidelberg, pp 1–391

    Book  Google Scholar 

  • Prochazkova D, Wilhelmova N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24:61–65

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Chen W, Li J, Wang J, Zhou Z, Liu W, Fu W (2009) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aqua Toxicol 92:250–257

    Article  CAS  Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic streses. J Integrative Plant Biol 50:1238–1246

    Article  CAS  Google Scholar 

  • Rashkov GD, Dobrikova AG, Pouneva ID, Misra AN, Apostolova EL (2012) Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sens Actuat: B. Chemical 161:151–155

    Article  CAS  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Aplic 22:1–10

    Google Scholar 

  • Rouillon R, Piletsky SA, Breton F, Piletska EV, Carpentier R (2006) Photosystem II biosensors for Heavy Metals Monitoring. In: Giardi MT, Piletska E (eds) Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Springer US, pp 166–174

    Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  PubMed  Google Scholar 

  • Sanakis Y, Goussias C, Mason RP, Petrouleas V (1997) NO interacts with the tyrosine radical YD• of photosystem II to form an iminoxyl radical, Biochemistry 36:1411–1417

    Google Scholar 

  • Sanakis Y, Petasis D, Petrouleas V, Hendrich M (1999) Simultaneous binding of fluoride and NO to the nonheme iron of Photosystem II: Quantitative EPR evidence for a weak exchange interaction between the semiquinone QA – and the iron-nitrosyl complex. J Am Chem Soc 121:9155–9164

    Article  CAS  Google Scholar 

  • Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Goussias C, Petrouleas V, Rutherford AW (2002) Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: Formation of an S−2 state. Biochemistry 41:3057–3064

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Petrouleas V (1998) In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer, Dordrecht., Vol. 2, pp 1319–1322

    CAS  Google Scholar 

  • Selcukcam EC, Cevahir OG (2008) Investigation on the relationship between senescence and nitric oxide in sunflower (Helianthus annuus L.) seedlings. Pak J Bot 40:1993–2004

    Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Shi SY, Wang G, Wang YD, Zhang LG, Zhang LX (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    Article  CAS  PubMed  Google Scholar 

  • Song L, Ding W, Shen J, Zhang Z, Bi Y, Zhang L (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    Article  CAS  Google Scholar 

  • Sood A, Kalra C, Pabbi S, Uniyal PL (2012) Differential responses of hydrogen peroxide, lipid peroxidation and antioxidant enzymes in Azolla microphylla exposed to paraquat and nitric oxide. Biologia 67:1119–1128

    Article  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2012) Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves, Acta Physiol Plant 34:819–825

    Article  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Styring S, Rutherford AW (1987) In the oxygen-evolving complex of photosystem II the S0-state is oxidized to the S1-state by D+ (Signal II slow). Biochemistry 26:2401–2405

    Article  CAS  Google Scholar 

  • Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis, Plant Cell Physiol 48:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts, Plant Cell Rep 32:31–44

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181:871–879

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L (2012) ABA says NO to UV-B: a universal response? Trends in Plant Sci 17:510–517

    Article  CAS  Google Scholar 

  • Trebst A (1987) The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z Naturforsch 42c:742–750

    Google Scholar 

  • Vladkova R, Ivanova P, Krasteva V, Misra AN, Apostolova E (2009) Assessment of chlorophyll fluorescence and photosynthetic oxygen evolution parameters in development of biosensors for detection of QB binding herbicides. Compt rend Acad bulg Sci 62:355–360

    CAS  Google Scholar 

  • Vladkova R, Dobrikova AG, Singh R, Misra AN, Apostolova E (2011) Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: Changes in flash oxygen evolution and chlorophyll fluorescence. Nitric Oxide 24:84–90

    Article  CAS  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöfl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Waldo GS, Penner-Hahn JE (1995) Mechanism of Manganese Catalase Peroxide Disproportionation – Determination of Manganese Oxidation-States During Turnover. Biochemistry 34:1507–1512

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Rad Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wodala B (2006) Combined effects of nitric oxide and cyanide on the photosynthetic electron transport of intact leaves. Acta Physiol Szeg 50:185–188

    Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of NO in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146:1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Envron 25:131–139

    Article  CAS  Google Scholar 

  • Xu YF, Sun XL, Jin J-W, Zhou H (2010) Protective roles of nitric oxide on antioxidant systems in tall fescue leaves under high-light stress. Afr J Biotechnol 9:300–306

    CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An altenative pathway for nitric oxide production in plants: new features of an old enzyme. Trends in Plant Sci 4:128–139

    Article  CAS  Google Scholar 

  • Yang JD, Zhao HL, Zhang TH, Yun JF (2004) Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. Acta Sin 46:1009–1014

    CAS  Google Scholar 

  • Yu L, Gao R, Shi Q, Wang X, Wei M, Yang F (2013) Exogeneous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pak J Bot 45:813–819

    Google Scholar 

  • Zhang L, Wang Y, Zhao L, Shi S, Zhang L (2006) Involvement of nitric oxide in light-mediated greening of barley seedlings. J Plant Physiol 163:818–826

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhou S, Xuan Y, Sun M, Zhao L (2009) Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation. J Plant Biol 52:135–140

    Article  CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Zhao X, Wu Y, Zhang L (2007) Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J Plant Physiol 164:737–745

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, He J, Wang X, Zhang L (2008) Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182–191

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This is a part of the UGC MRP No. F. 36-302/2008 and DBT BUILDER project No. BT/PR9028/INF/22/193/2013 to ANM and is the result of International cooperation grants BIn-01/07 of the NSF of Bulgaria and project Grant No. INT/BULGARIA/B70/06 DST, India. MM acknowledges the UGC, India grant [No. F.15-14/11 (SA-II)] of PDF for Women.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarendra N. Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Misra, A.N., Singh, R., Misra, M., Vladkova, R., Dobrikova, A.G., Apostolova, E.L. (2017). Nitric Oxide Mediated Effects on Chloroplasts. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_14

Download citation

Publish with us

Policies and ethics