Advertisement

Adaptation to Low Temperature in a Photoautotrophic Antarctic Psychrophile, Chlamydomonas sp. UWO 241

  • Beth Szyszka
  • Alexander G. Ivanov
  • Norman P. A. HünerEmail author
Chapter

Summary

Permanent cold environments account for a large portion of the Earth. These environments are inhabited by various micro-organisms that have often adapted to unique combinations of selection pressures. Therefore, there is considerable interest in understanding survival strategies utilized by extremophiles to exist in such harsh environments. This chapter summarizes common adaptive mechanisms of psychrophilic organisms with focus on the unique photosynthetic characteristics of a unicellular green microalga, Chlamydomonas sp. UWO241. Chlamydomonas sp. UWO 241 was isolated from perennially, ice-covered Lake Bonney, Antarctica where it has adapted to constant low temperatures and high salinity. A unique characteristic of this algal strain is its inability to undergo state transitions combined with its high rates of photosystem I cyclic electron transport. Consequently, in contrast to mesophilic green algal species such as Chlamydomonas reinhardtii which undergo state transitions, Chlamydomonas sp. UWO241 does not phosphorylate LHCII polypeptides. Rather, the Antarctic psychrophile exhibits a unique, light-dependent, thylakoid polypeptide phosphorylation profile associated with a photosystem I supercomplex which also contains the cytochrome b6/f complex. The stability of this photosystem I supercomplex in Chlamydomonas sp. UWO 241 is sensitive to its phosphorylation status as well as high salt concentrations. The role of the photosystem I supercomplex and its phosphorylation status in the regulation of photosystem I cyclic electron transport is discussed. We suggest that Chlamydomonas sp. UWO 241 should be considered a model system to study psychrophily and adaptation to low temperature in eukaryotic photoautrophs.

Keywords

Cold adaptation Cold acclimation Photoautotrophs Chlamydomonas Psychrophile Protein phosphorylation PSI-Cyt b6/f supercomplex 

Notes

Acknowledgements

BS is the recipient of an NSERC Postgraduate Fellowship. NPAH gratefully acknowledges the long-term financial support from the NSERC Discovery Grants programme as well as funding from the Canada Foundation for Innovation and the Canada Research Chairs programme.

Conflict of Interest

We declare no conflict of interest.

References

  1. Adam Z. Chloroplast proteases and their role in photosynthetic regulation. In: Aro EM, Andersson B, Eds. Advances in Photosynthesis and Respiration. Dordrecht, Kluwer, 2001; pp. 265–276.Google Scholar
  2. Adams III WW, Hoehn A, Demmig-Adams B. Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust J Plant Physiol 1995; 22: 75–85.CrossRefGoogle Scholar
  3. Allen JF. Redox control of gene expression and the function of chloroplast genomes- an hypothesis. Photosynth Res 1993; 36: 95–102.PubMedCrossRefGoogle Scholar
  4. Aluru MR, Zola J, Foudree A, Rodermel SR. Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors. Plant Physiol 2009; 150: 904–23.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Anderson JM, Chow WS, Park YI. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 1995; 46: 129–39.PubMedCrossRefGoogle Scholar
  6. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373–99.PubMedCrossRefGoogle Scholar
  7. Armstrong AF, Badger MR, Day DA, Barlett MM, Smith PMC, Millar AH, Whelan JM, Atkin OK. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ 2008; 31: 1156–69.PubMedCrossRefGoogle Scholar
  8. Atkin OK, Bruhn D, Hurry VM, Tjoelker MG. The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 2005; 32: 87–105.CrossRefGoogle Scholar
  9. Baker RP, Harreman MT, Eccleston JF, Corbett AH, Stewart M. Interaction between Ran and Mog1 is required for efficient nuclear protein import. J Biol Chem 2001; 276: 41255–62.PubMedCrossRefGoogle Scholar
  10. Bielewicz S, Bell EM, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM. Protist diversity in a permanently ice-covered Antarctic lake during polar night transition. ISME J 2011; 5: 1559–64.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 2005; 437: 1179–82.PubMedCrossRefGoogle Scholar
  12. Bott TL, Kaplan LA. Bacterial biomass, metabolic state, and activity in stream sediments: relation to environmental variables and multiple assay comparisons. Appl Environ Microbiol 1985; 50: 508–22.PubMedCentralPubMedGoogle Scholar
  13. Brautigam K, Dietzel L, Kleine T, Stroher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dormann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T. Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 2009; 21: 2715–32.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AG, Hüner NPA, Corcuera LJ. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 2007; 58: 3581–90.PubMedCrossRefGoogle Scholar
  15. Cardol P, Forti G, Finazzi G. Regulation of electron transport in microalgae. Biochim Biophys Acta 2011; 1807: 912–18.PubMedCrossRefGoogle Scholar
  16. Chen Z, HE C, Hu H. Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 2012; 16: 127–33.Google Scholar
  17. Chen M, Thelen JJ. Acyl-lipid desaturase 2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 2013; 25: 1430–44.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chen WM, Jin N, Shi Y, Su YQ, Fei BJ, Li W, Qiao DR, Cao Y. Coordinate expression of light-harvesting chlorophyll a/b gene family of photosystem II and chlorophyll a oxygenase gene regulated by salt-induced phosphorylation in Dunaliella salina. Photosynthetica 2010; 48: 355–60.CrossRefGoogle Scholar
  19. Chen Z, Gong Y, Fang X, Hu H. Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 2012; 28: 3219–25.PubMedCrossRefGoogle Scholar
  20. Clarke JE, Johnson GN. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 2001; 212: 808–16.PubMedCrossRefGoogle Scholar
  21. D’Amico S, Collins T, Marx JC, Feller G, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Rep 2006; 7: 385–89.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Hüner NPA. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus. Physiol Plant 2012a; 144: 169–88.PubMedCrossRefGoogle Scholar
  23. Dahal K, Gadapati W, Savitch L, Singh J, Hüner NPA. Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions. Planta 2012b; 236: 1639–52.PubMedCrossRefGoogle Scholar
  24. Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Hüner NPA. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus. Physiol Plant 2012c; 144: 169–88.PubMedCrossRefGoogle Scholar
  25. Dahal K, Knowles V, Plaxton WC, Hüner NPA. Enhancement of photosynthetic performance, water use efficiency and grain yield under long-term growth at elevated CO2 in wheat and rye is growth temperature and cultivar dependent. Environ Exp Bot 2013a; 106: 207–220.CrossRefGoogle Scholar
  26. Dahal K, Kane K, Sarhan F, Savitch LV, Singh J, Grodzinski B, Hüner NPA. C-Repeat transcription factors as targets for the maintenance of crop yield under suboptimal growth conditions. In: Pessarakli M, Ed. Handbook of Plant and Crop Physiology (3rd ed), Florida, Taylor & Francis Books, 2013b; pp. 313–32.Google Scholar
  27. Demchenko AP, Ruskyn OI, Saburova EA. Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim Biophys Acta 1989; 998: 196–03.PubMedCrossRefGoogle Scholar
  28. Demmig-Adams B, Adams WW, Ebbert V, Logan BA. Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ, Eds. Advances in Photosynthesis. The Photochemistry of Carotenoids. Dordrecht, Kluwer Academic, 1999; pp. 245–269.Google Scholar
  29. Depège N, Bellafiore S, Rochaix JD. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 2003; 299: 1572–5.PubMedCrossRefGoogle Scholar
  30. Devos N, Ingouff M, Loppes R, Matagne RF. Rubisco adaptation to low temperatures: A comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 1998; 34: 655–60.CrossRefGoogle Scholar
  31. Dietz KJ. Plant peroxiredoxins. Annu Rev Plant Biol 2003; 54: 93–107.PubMedCrossRefGoogle Scholar
  32. Dietz KJ, Pfannschmidt T. Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 2011; 155: 1477–85.PubMedCrossRefGoogle Scholar
  33. Dolhi JM, Maxwell DP, Morgan-Kiss RM. Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 2013; 17:711–22.PubMedCrossRefGoogle Scholar
  34. Dubacq JP, Tremolieres A. Occurence and function of phosphatidylglycerol containing delta3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Veg 1983; 21: 293–12.Google Scholar
  35. Eberhard S, Finazzi G, Wollman FA. The dynamics of photosynthesis. Annu Rev Genet 2008; 42: 463–15.PubMedCrossRefGoogle Scholar
  36. Eicken H. The role of sea ice in structuring Antarctic ecosystems. Polar Biol 1992; 12: 3–13.CrossRefGoogle Scholar
  37. Ensminger I, Busch F, Hüner NPA. Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 2006; 126: 28–44.CrossRefGoogle Scholar
  38. Escoubas JM, Lomas M, LaRoche J, Falkowski PG. Light intensity regulates cab gene transcription via the redox state of the plastoquinone pool in the green alga, Dunaliella tertiolecta. Proc Natl Acad Sci USA 1995; 92: 10237–41.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 2011; 23: 3992–12.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Estavillo GM, Chan KX, Phua SY, Pogson BJ. Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front Plant Sci 2013; 3: 300.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Falkowski PG. Light–shade adaptation and vertical mixing of marine phytoplankton: a comparative field study. J Mar Res 1983; 41: 215–37.CrossRefGoogle Scholar
  42. Falkowski PG, Chen YB. Photoacclimation of light harvesting systems in eukaryotic algae. In: Green BR, Parson WW, Eds. Advances in photosynthesis and respiration Light harvesting antennas in photosynthesis. Dordrecht, Kluwer Academic, 2003a; pp. 423–47.CrossRefGoogle Scholar
  43. Falkowski PG, Chen YB. Photoacclimation of light harvesting systems in eukaryotic algae. Advances in Photosynthesis and Respiration. Light Harvesting Antennas in Photosynthesis (Green BR and Parson WW, eds). Kluwer Academic Publishers, Dordrecht 2003b; 13: 423–447.Google Scholar
  44. Falkowski PG, Owens TG, Ley AC, Mauzerall DC. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol 1981; 68: 969–73.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 2003; 1: 200–208.PubMedCrossRefGoogle Scholar
  46. Fernandez AP, Strand A. Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol 2008; 11: 509–13.PubMedCrossRefGoogle Scholar
  47. Finazzi G, Forti G. Metabolic flexibility of the green alga C. reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth Res 2004; 82: 327–38.PubMedCrossRefGoogle Scholar
  48. Finazzi G, Furia A, Barbagallo RP, Forti G. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1999; 1413: 117–29.PubMedCrossRefGoogle Scholar
  49. Finazzi G, Zito F, Barbagallo RP, Wollman FA. Contrasted effects of inhibitors of cyt b6/f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. J Biol Chem 2001; 276: 9770–74.PubMedCrossRefGoogle Scholar
  50. Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 2012; 63: 1637–61.PubMedCrossRefGoogle Scholar
  51. Fristedt R, Willig A, Granath P, Crevecoeur M, Rochaix JD, Vener AV. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell 2009; 21: 3950–64.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Fujita Y. A study on the dynamic features of photosystem stoichiometry - accomplishments and problems for future studies. Photosynth Res 1997; 53: 83–93.CrossRefGoogle Scholar
  53. Golding AJ, Johnson GN. Down-regulation of linear and activation of cyclic electron transport during drought. Planta 2003; 218: 107–14.PubMedCrossRefGoogle Scholar
  54. Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Hüner NPA. Temperature and light modulate the trans-delta3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non-photochemical quenching. Plant Cell Physiol 2005; 46: 1272–82.PubMedCrossRefGoogle Scholar
  55. Gudynaite-Savitch L, Gretes M, Morgan-Kiss R, Savitch LV, Simmonds J, Kohalmi SE, Hüner NPA. Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii. Mol Genet Genom 2006; 275: 387–98.CrossRefGoogle Scholar
  56. Haehnel W. Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 1984; 35: 659–93.CrossRefGoogle Scholar
  57. Hatano S, Kabata K, Yoshimoto M, Sadakane H. Accumulation of free fatty acids during hardening of Chlorella ellipsoidea. Plant Physiol 1982; 70: 1173–77.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Hazel JR. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 1995; 57: 19–42.PubMedCrossRefGoogle Scholar
  59. Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 1992; 100: 1621–26.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Hochachka PW, Somero GN, Ed. Biochemical Adaptation. Mechanisms and processes in physiological evolution. New York: Oxford University Press Inc 2002; pp. 290–450.Google Scholar
  61. Hopkins WG, Hüner NPA, Ed. Introduction to Plant Physiology, 4th edition. New York: Wiley and Sons 2009; pp. 77–90.Google Scholar
  62. Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 2008; 275: 1069–79.PubMedCrossRefGoogle Scholar
  63. Hu H, Li H, Xu X. Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 2008; 47: 28–34.CrossRefGoogle Scholar
  64. Hüner NPA, Grodzinski B. Photosynthesis and photoautotrophy. In: Murray Moo-Young, Ed. Comprehensive Biotechnology (second edition) Amsterdam, Elsevier, 2011; pp. 315–22.Google Scholar
  65. Hüner NPA, Krol M, Williams JP, Maissan E, Low P, Roberts D, Thompson JE. Low temperature development induces a specific decrease in trans-Δ3-hexadecenoic acid content which influences LHCII organization. Plant Physiol 1987; 84: 12–18.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Hüner NPA, Williams JP, Maissan EE, Myscich EG, Krol M, Laroche A, Singh J. Low temperaure-induced decrease in trans-delta3-hexadecenoic acid content is correlated with freezing tolerance in cereals. Plant Physiol 1989; 89: 144–50.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Hüner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 1993; 37: 19–39.PubMedCrossRefGoogle Scholar
  68. Hüner NPA, Öquist G, Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci 1998; 3: 224–30.CrossRefGoogle Scholar
  69. Hüner NPA, Öquist G, Melis A. Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW, Eds. Advances in Photosynthesis and Respiration Light Harvesting Antennas in Photosynthesis. Dordrecht, Kluwer Academic, 2003a; pp. 401–421.CrossRefGoogle Scholar
  70. Hüner NPA, Öquist G, Melis A. 2003b. Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW, Eds. Advances in photosynthesis and respiration Light harvesting antennas in photosynthesis. Dordrecht, Kluwer Academic, 2003; pp. 401–21.CrossRefGoogle Scholar
  71. Hüner NPA, Dahal K, Hollis L, Bode R, Rosso D, Krol M, Ivanov AG. Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Sci 2012; 3: 255.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Hüner NPA, Bode R, Dahal K, Busch FA, Possmayer M, Szyszka B, Rosso D, Ensminger I, Krol M, Ivanov AG, Maxwell DP. Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 2013a; 91: 127–36.CrossRefGoogle Scholar
  73. Hüner NPA, Bode R, Dahal K, Busch FA, Possmayer M, Szyszka B, Rosso D, Ensminger I, Krol M, Ivanov AG, Maxwell DP. Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 2013b; 91: 127–36.CrossRefGoogle Scholar
  74. Hurry VM, Keerberg O, Pärnik T, Gardeström P, Öquist G. Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L). Planta 1995a; 195: 554–62.CrossRefGoogle Scholar
  75. Hurry V, Tobiaeson M, Krömer S, Gardeström P, Öquist G. Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale cereale L.) following cold-hardening. Plant Cell Environ 1995b; 18: 69–76.CrossRefGoogle Scholar
  76. Ifuku K, Nakatsu T, Kato H, Sato F. Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 2004; 5: 362–7.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Ifuku K, Ishihara S, Sato F. J. Integr. Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. Plant Biol 2010; 52: 723–34.Google Scholar
  78. Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N. Gene engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 2003; 278: 12191–98.PubMedCrossRefGoogle Scholar
  79. Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F. Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 2007; 145: 668–79.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 2010; 464: 1210–13.PubMedCrossRefGoogle Scholar
  81. Jung H-S, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 2010; 152: 453–59.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Kargul J, Barber J. Photosynthetic acclimation: structural reorganisation of light harvesting antenna; role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J 2008; 275: 1056–68.PubMedCrossRefGoogle Scholar
  83. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 1999; 284: 654–7.PubMedCrossRefGoogle Scholar
  84. Kieselbach T, Bystedt M, Hynds P, Robinson C, Schröder WP. A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 2000; 480: 271–6.PubMedCrossRefGoogle Scholar
  85. Krol M, Hüner NPA, Williams JP, Maissan E. Chloroplast biogenesis at cold hardening temperatures. Kinetics of trans-3-hexadecenoic acid accumulation and the assembly of LHCII. Photosynth Res 1988; 15: 115–32.PubMedCrossRefGoogle Scholar
  86. Krol M, Ivanov AG, Jansson S, Kloppstech K, Hüner NPA. Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol 1999; 120: 193–04.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Krupa Z, Williams JP, Hüner N. The role of acyl lipids in reconstitution of lipid-depleted light harvesting complex II from cold hardened and nonhardened rye. Plant Physiol 1992; 100: 931–38.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Kurepin L, Dahal K, Savitch L, Singh J, Bode R, Ivanov AG, Hurry V, Hüner NPA. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci 2013; 14: 12729–63.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 2002; 317: 41–72.PubMedCrossRefGoogle Scholar
  90. Leonardos ED, Savitch LV, Hüner NPA, Öquist G, Grodzinski B. Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiol Plant 2003; 117: 521–31.PubMedCrossRefGoogle Scholar
  91. Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. Plant J 2006; 48: 499–10.PubMedCrossRefGoogle Scholar
  92. Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 2009; 21: 1798–12.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Liska AJ, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 2004; 136: 2806–17.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Liu XD, Shen YG. NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Lett 2004; 569: 337–40.PubMedCrossRefGoogle Scholar
  95. Liu J, Yang H, Lu Q, Wen X, Chen F, Peng L, Zhang L, Lu C. PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant Cell 2012; 24: 4992–06.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Lizotte MP, Priscu JC. Natural fluorescence and quantum yields in vertically stationary phytoplankton from perennially ice-covered lakes. Limnol Oceanogr 1994; 39: 1399–410.CrossRefGoogle Scholar
  97. Lizotte MP, Sharp TR, Priscu JC. Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica: biomass and productivity during the winter-spring transition. Polar Biol 1996; 16: 155–l 62.Google Scholar
  98. Los DA, Murata N. Sensing and responses to low temperature in cyanobacteria. In: Storey KB, Storey JM, Eds. Sensing, Signalling and Cell Adaptation. Amsterdam, Elsevier Science BV, 2002; pp. 139–53.Google Scholar
  99. Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 2004; 1666:142–57.PubMedCrossRefGoogle Scholar
  100. Los D, Mironov K, Allakhverdiev S. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 2013; 116: 489–509.PubMedCrossRefGoogle Scholar
  101. Lu JM, Deschenes RJ, Fassler JS. Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction. Eukaryot Cell 2004; 3:1544–56.PubMedCentralPubMedCrossRefGoogle Scholar
  102. Lucker B, Kramer D. Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 2013a; 117: 449–59.PubMedCrossRefGoogle Scholar
  103. Lucker B, Kramer DM. Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 2013b; 117: 449–59.PubMedCrossRefGoogle Scholar
  104. Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C. Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. Biochim Biophys Acta. 2007a; 1767: 500–8.PubMedCrossRefGoogle Scholar
  105. Lundin B, Hansson M, Schoefs B, Vener AV, Spetea C. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. Plant J 2007b; 49: 528–39.PubMedCrossRefGoogle Scholar
  106. Lundin B, Nurmi M, Rojas-Stuetz M, Aro EM, Adamska I, Spetea C. Towards understanding the functional difference between the two PsbO isoforms in Arabidopsis thaliana – insights from phenotypic analyses of psbo knockout mutants. Photosynth Res 2008; 98: 405–14.PubMedCrossRefGoogle Scholar
  107. Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signalling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 2012; 159: 118–30.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Mancuso Nichols CA, Garon S, Bowman JP, Raguénès G, Guézennec J. Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 2004; 96: 1057–66.PubMedCrossRefGoogle Scholar
  109. Masuda T, Tanaka A, Melis A. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 2003; 51: 757–71.PubMedCrossRefGoogle Scholar
  110. Maxwell DP, Laudenbach DE, Hüner NPA. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 1995a; 109: 787–95.PubMedCentralPubMedCrossRefGoogle Scholar
  111. Maxwell DP, Falk S, Hüner NPA. Photosystem II excitation pressure and development of resistance to photoinhibition I. LHCII abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 1995b; 107: 687–94.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Melis A, Murakami A, Nemson JA, Aizawa K, Ohki K, Fujita Y. Chromatic regulation in Chlamydomonas reinhardtii alters photosystem stoichiometry and improves the quantum efficiency of photosynthesis. Photosynth Res 1996; 47: 253–65.PubMedCrossRefGoogle Scholar
  113. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007; 318: 245–50.PubMedCentralPubMedCrossRefGoogle Scholar
  114. Miskiewicz E, Ivanov AG, Hüner NPA. Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature. Plant Physiol 2002; 130: 1414–25.PubMedCentralPubMedCrossRefGoogle Scholar
  115. Mitchell R, Spillmann A, Haehnel W. Plastoquinol diffusion in linear photosynthetic electron transport. Biophys J 1990; 58: 1011–24.PubMedCentralPubMedCrossRefGoogle Scholar
  116. Moorhead DL, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Virginia RA, Wall DH. Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. BioScience 1999; 49: 1009–19.CrossRefGoogle Scholar
  117. Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA. Structure and composition of the photochemical apparatus of the antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 1998a; 56: 303–14.CrossRefGoogle Scholar
  118. Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA. Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 1998b; 56: 303–14.CrossRefGoogle Scholar
  119. Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Hüner NPA. Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 2002a; 1561: 251–65.PubMedCrossRefGoogle Scholar
  120. Morgan-Kiss RM, Ivanov AG, Hüner NPA. The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta. 2002b; 214: 435–45.PubMedCrossRefGoogle Scholar
  121. Morgan-Kiss RM, Ivanov AG, Pocock T, Krol M, Gudynaite-Savitch L, Hüner NPA. The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (Chlorophyceae, Chlorophyta) exhibits a limited capacity to photoacclimate to red light. J Phycol 2005; 41: 791–00.CrossRefGoogle Scholar
  122. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Hüner NP. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R 2006a; 70: 222–52.CrossRefGoogle Scholar
  123. Morgan-Kiss R, Priscu JC, Pocock T, Gudynaite-Savitch L, Hüner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 2006b; 70: 222–52.PubMedCentralPubMedCrossRefGoogle Scholar
  124. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 2002; 110: 361–71.PubMedCrossRefGoogle Scholar
  125. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 2004; 429: 579–82.PubMedCrossRefGoogle Scholar
  126. Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol 1997; 115: 875–79.PubMedCentralPubMedCrossRefGoogle Scholar
  127. Murata N, Siegenthaler PA. Lipids in photosynthesis: an overview. In: Siegenthaler P-A, Ed. Advances in Photosynthesis. Lipids in Photosynthesis: Structure Function and Genetics. Dordrecht, Kluwer Academic, 1998; pp. 1–20.Google Scholar
  128. Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 2008; 31: 872–85.PubMedCrossRefGoogle Scholar
  129. Napolitano MJ, Shain DH. Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc Biol Sci 2004; 271: S273-6.PubMedCentralPubMedCrossRefGoogle Scholar
  130. Napolitano MJ, Shain DH. Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 2005; 9: 93–8.PubMedCrossRefGoogle Scholar
  131. Neale PJ, Pricu JC. The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 1995; 36: 253–63.CrossRefGoogle Scholar
  132. Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 541–68.PubMedCrossRefGoogle Scholar
  133. Noctor G, Mhamdi A, Queval G, Foyer CH. Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place. Plant Physiol 2013; 163: 665–71.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Nott A, Jung H-S, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 2006; 57: 739–59.PubMedCrossRefGoogle Scholar
  135. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Söderberg L, Roepstorff P, von Heijne G, van Wijk KJ. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 2002; 14: 211–36.PubMedCentralPubMedCrossRefGoogle Scholar
  136. Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 2009; 21: 3623–40.PubMedCentralPubMedCrossRefGoogle Scholar
  137. Peter GF, Thornber JP. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 1991; 266: 16745–54.PubMedGoogle Scholar
  138. Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 2003; 8: 33–41.PubMedCrossRefGoogle Scholar
  139. Pocock T, Lachance MA, Pröschold T, Priscu JC, Kim SS, Hüner NPA. Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 2004; 40:1138–48.CrossRefGoogle Scholar
  140. Pocock TH, Koziak A, Rosso D, Falk S, Hüner NPA. Chlamydomonas raudensis (UWO241), chlorophyceae, exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature. J Phycol 2007; 43: 924–36.CrossRefGoogle Scholar
  141. Pocock T, Vetterli A, Falk S. Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. J Exp Bot 2011; 62: 1169–77.PubMedCrossRefGoogle Scholar
  142. Pogson BJ, Woo NS, Förster B, Small ID. Plastid signalling to the nucleus and beyond. Trends Plant Sci 2008; 13: 602–09.PubMedCrossRefGoogle Scholar
  143. Portner HO, Peck LS, Zielinski S, Conway LZ. Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biol 1999; 22: 17–30.CrossRefGoogle Scholar
  144. Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP. Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 2011; 47:1098–09.PubMedCrossRefGoogle Scholar
  145. Priscu JC, Ed. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Vol. 72, Antarctic Research Series. Washington: AGU Press 1998.Google Scholar
  146. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 1998; 280: 2095–98.PubMedCrossRefGoogle Scholar
  147. Raymond JA, Morgan-Kiss R. Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS One 2013; 8: e59186.PubMedCentralPubMedCrossRefGoogle Scholar
  148. Remy R, Tremolieres A, Duval JC, Ambard-Bretteville F, Dubacq JP. Study of the supramolecular organization of the oligomeric light harvesting chlorophyll-protein (LHCP): conversion of the oligomeric form into the monomeric form by phospholipase A2 and reconsitution with liposomes. FEBS Lett 1982; 137: 271–75.CrossRefGoogle Scholar
  149. Rochaix JD. Regulation of photosynthetic electron transport. Biochim Biophys Acta 2011; 1807: 375–83.PubMedCrossRefGoogle Scholar
  150. Roose JL, Frankel LK, Bricker TM. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS One 2011; 6: e28624.PubMedCentralPubMedCrossRefGoogle Scholar
  151. Rosso D, Bode R, Li W, Krol M, Saccon D, Wang S, Schillaci LA, Rodermel SR, Maxwell DP, Hüner NPA. Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. Plant Cell 2009; 21: 3473–92.PubMedCentralPubMedCrossRefGoogle Scholar
  152. Ruelland E, Vaultier MN, Zachowski A, Hurry V. Cold signalling and cold acclimation in plants. Adv Bot Res 2009; 49: 35–150.CrossRefGoogle Scholar
  153. Savitch LV, Maxwell DP, Hüner NPA. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris. Plant Physiol 1996; 111: 127–36.PubMedCentralPubMedCrossRefGoogle Scholar
  154. Savitch LV, Harney T, Hüner NPA. Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 2000; 108: 270–78.CrossRefGoogle Scholar
  155. Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Öquist G, Hüner NPA, Gardestrom P. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity which is associated with an increased reduction of the chloroplast stroma. Planta 2001; 214: 295–01.PubMedCrossRefGoogle Scholar
  156. Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Hüner NPA, Öquist G. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 2002; 25: 761–71.CrossRefGoogle Scholar
  157. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Hüner NPA, Shinozaki K, Singh J. The effect of over-expression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 2005; 46: 1525–39.PubMedCrossRefGoogle Scholar
  158. Schlicher T, Soll J. Molecular chaperones are present in the thylakoid lumen of pea chloroplasts. FEBS Lett 1996; 379: 302–04.PubMedCrossRefGoogle Scholar
  159. Sinensky M. Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA. 1974; 71: 522–25.PubMedCentralPubMedCrossRefGoogle Scholar
  160. Spetea C, Keren N, Hundal T, Doan JM, Ohad I, Andersson B. GTP enhances the degradation of the photosystem II D1 protein irrespective of its conformational heterogeneity at the Q(B) site. J Biol Chem 2000; 275: 7205–11.PubMedCrossRefGoogle Scholar
  161. Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 2004; 101: 1409–14.PubMedCentralPubMedCrossRefGoogle Scholar
  162. Spigel RH, Priscu JC. Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake. Hydrobiologia 1996; 321: 177–90.CrossRefGoogle Scholar
  163. Spreitzer RJ, Salvucci ME. Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 2002; 53: 449–75.PubMedCrossRefGoogle Scholar
  164. Stitt M, Hurry V. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 2002; 5: 199–206.PubMedCrossRefGoogle Scholar
  165. Strand A, Hurry V, Gustafsson P, Gardestrom P. Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic expression despite the accumulation of soluble carbohydrates. Plant J 1997; 12: 605–14.PubMedCrossRefGoogle Scholar
  166. Strand A, Hurry V, Henkes S, Hüner NPA, Gustafsson P, Gardestrom P, Stitt M. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 1999; 119: 1387–97.PubMedCentralPubMedCrossRefGoogle Scholar
  167. Strand A, Foyer CH, Gustafsson P, Gardestrom P, Hurry V. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ 2003; 26: 523–35.CrossRefGoogle Scholar
  168. Suorsa M, Sirpiö S, Aro EM. Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant 2009; 2: 1127–40.PubMedCrossRefGoogle Scholar
  169. Szyszka B, Ivanov AG, Hüner NPA. Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 2007; 1767: 789–00.PubMedCrossRefGoogle Scholar
  170. Szyszka-Mroz B, Pittock P, Ivanov AG, Lajoie G, Hüner NPA. The Antarctic psychrophile, Chlamydomonas sp. UWO 241, preferentially phosphorylates a PSI-cytochrome b6/f supercomplex. Plant Physiol 2015; 169: 717–736.PubMedCentralPubMedCrossRefGoogle Scholar
  171. Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F. Cyclic electron flow is redox-controlled but independent of state transition. Nature Commun 2013; 4 DOI:  10.1038/ncomms2954.
  172. Takizawa K, Takahashi S, Hüner NPA, Minagawa J. Salinity affects the photoacclimation of Chlamyomonas raudensis Ettl UWO241. Photosynth Res 2009; 99: 195–03.PubMedCrossRefGoogle Scholar
  173. Thomas DN, Dieckmann GS. Antarctic sea ice – a habitat for extremophiles. Science 2002; 295: 641–6644.PubMedCrossRefGoogle Scholar
  174. Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, Mishra A, Marty F, Schoefs B, Adamska I, Persson BL, Spetea C. Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 2007; 282: 8848–59.PubMedCrossRefGoogle Scholar
  175. Tikkanen M, Nurmi M, Kangasjarvi S, Aro E-M. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 2008; 1777: 1432–37.PubMedCrossRefGoogle Scholar
  176. Tikkanen M, Gollan P, Suorsa M, Kangasjarvi S, Aro EM. STN7 operates in retrograde signalling through controlling redox balance in the electron transfer chain. Front Plant Sci 2012; 3: 277.PubMedCentralPubMedCrossRefGoogle Scholar
  177. Trebst A. Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. Methods Enzymol 1980; 69: 675–15.CrossRefGoogle Scholar
  178. Tremolieres A, Siegenthaler PA. Reconstitution of photosynthetic structures and activities with lipids. In: Siegenthaler PA, Ed. Advances in Photosynthesis and Respiration. Lipids in Photosynthesis: Structure, Function and Genetics. Dordrecht, Kluwer Academic, 1998; pp. 175–89.Google Scholar
  179. Van den Burg B. Extremophiles as a source for novel enzymes. Curr Opin Microbiol 2003; 6: 213–8.PubMedCrossRefGoogle Scholar
  180. Vener AV. Phosphorylation of thylakoid proteins. In: Demmig-Adams B, Adams III, WW, Mattoo AK, Eds. Advances in Photosynthesis and Respration. Photoprotection, Photoinhibition Gene Regulation and Environment. Dordrecht, Kluwer Academic, 2006; pp. 107–126.CrossRefGoogle Scholar
  181. Wada H, Gombos Z, Sakamoto T, Murata N. Role of lipids in low temperature adaptation. In: Yamomoto HY, Smith CM, Eds. Current Topics in Plant Physiology: Photosynthetic Responses to the Environment. Amer Soc Plant Physiol 1993; 8: 78–87.Google Scholar
  182. Wilson KE, Hüner NPA. The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 2000; 212: 93–02.PubMedCrossRefGoogle Scholar
  183. Wilson KE, Krol M, Hüner NPA. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. Planta 2003; 217: 616–27.PubMedCrossRefGoogle Scholar
  184. Wilson KE, Ivanov AG, Öquist G, Grodzinski B, Sarhan F, Hüner NPA. Energy balance, organellar redox status and acclimation to environmental stress. Can J Bot 2006; 84: 1355–70.CrossRefGoogle Scholar
  185. Wollman FA. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 2001a; 20: 3623–30.PubMedCentralPubMedCrossRefGoogle Scholar
  186. Wollman FA. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 2001b; 20: 3623–30.PubMedCentralPubMedCrossRefGoogle Scholar
  187. Woodson JD, Perez-Ruiz JM, Chory J. Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 2011; 21: 897–03.PubMedCentralPubMedCrossRefGoogle Scholar
  188. Wunder T, Liu Q, Aseeva E, Bonardi V, Leister D, Pribil M. Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. Planta 2013; 237: 541–58.PubMedCrossRefGoogle Scholar
  189. Yamazaki JY, Suzuki T, Maruta E, Kamimura Y. The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat. J Exp Bot 2005; 56: 1517–23.PubMedCrossRefGoogle Scholar
  190. Yang Z. Small GTPases versatile signaling switches in plants. Plant Cell 2002; 14: S375-S388.PubMedCentralPubMedGoogle Scholar
  191. Yin L, Lundin B, Bertrand M, Nurmi M, Solymosi K, Kangasjärvi S, Aro EM, Schoefs B, Spetea C. Role of thylakoid ATP/ADP carrier in photoinhibition and photoprotection of photosystem II in Arabidopsis. Plant Physiol 2010; 153: 666–77.PubMedCentralPubMedCrossRefGoogle Scholar
  192. Zer H, Vink M, Keren N, Dilly-Hartwig HG, Paulsen H, Herrmann RG, Andersson B, Ohad I. Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of LHCII. FEBS J 1999; 96: 8277–82.Google Scholar
  193. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA. The Qo site of cytochrome b6/f complexes controls the activation of the LHCII kinase. EMBO J 1999; 18: 2961–69.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beth Szyszka
    • 1
  • Alexander G. Ivanov
    • 1
    • 2
  • Norman P. A. Hüner
    • 1
    Email author
  1. 1.Department of Biology and the Biotron Center for Experimental Climate Change ResearchWestern UniversityLondonCanada
  2. 2.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations