Effects of Environmental Pollutants Polycyclic Aromatic Hydrocarbons (PAH) on Photosynthetic Processes

  • Anjana JajooEmail author


Increasing pollution of the environment has become an important problem of the present era. Polycyclic aromatic hydrocarbons (PAHs) are widely known as anthropogenic pollutants harmful to plants, animals and humans. Plants are an integral component of the terrestrial ecosystem and have ability to take up, transform and accumulate environmental pollutants including PAHs. It has been shown that PAHs influence the biochemical and physiological processes in plants, just similar to other toxic organic compounds, i.e. herbicides. They not only change the processes of energetic metabolism, but also change mechanisms associated with plant growth and development. In this chapter we shall be discussing the effects of PAH on plant growth, particularly the photosynthetic apparatus. A comprehensive and updated knowledge of the effects of various PAHs including naphthalene, anthracene, pyrene, fluoranthene on the photosynthetic mechanisms has been presented and discussed.


Polycyclic aromatic hydrocarbons (PAHs) Photosynthesis Plant growth Photosystem II Phototoxicity 



AJ would thank Department of Science and Technology (DST) India for the project (INT/RUS/RFBR/P-173). Rupal Singh Tomar is thanked for her help during the preparation of this manuscript.


  1. Ahammed, G.J.; Yuan, H.L.; Ogweno, J.O.; Zhou, Y.H.; Xia, X.J.; Mao, W.H.; Shi, K.; Yu, J.Q. Brassino steroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere, 2012, 86, 546–555.CrossRefPubMedGoogle Scholar
  2. Aksmann, A.; Tukaj, Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. Chemosphere, 2008, 74, 26–32.CrossRefPubMedGoogle Scholar
  3. Alkio, M.; Tabuchi, T.M.; Wang, X.C.; Colon-Carmona, A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot., 2005, 56, 2983–2994.CrossRefPubMedGoogle Scholar
  4. Ankley, G.; Mount, D.; Erickson, R.; Diamond, S.; Burkhard, L.; Sibley, P.; Cook, P. In: 9th Annual meeting of SETAC-Europe, Phototoxic polycyclic aromatic hydrocarbon in sediments: a model based approach for assessing risk. Leipzig, Germany, 1999.Google Scholar
  5. Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 2006, 141, 391–396.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bałdyga, B.; Wieczorek, J.; Smoczyński, S.; Wieczorek, Z.; Smoczyńska, K. Pea plant response to anthracene present in soil. Pollut. J. Environ. Stud., 2005, 14, 397–401.Google Scholar
  7. Burritt, D. J. The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ., 2008, 31, 1416–1431.CrossRefPubMedGoogle Scholar
  8. Chen, S.; Schopfer, P. Hydroxyl-radical production in physiological reactions. A novel functions of peroxidase. Eur. J. Biochem., 1999, 260, 726–735.CrossRefPubMedGoogle Scholar
  9. Collins, C.; Martin, I.; Fryer, M. Principal pathways for plant uptake of organic chemicals. Environment Agency, Rio House, Bristol, England, 2006.Google Scholar
  10. Desalme, D.; Binet, P.; Bernard, N.; Gilbert, D.; Toussaint, M.L.; Chiapusio, G. Atmospheric phenanthrene transfer and effects on two grassland species and their root symbionts: A microcosm study. Environ. Exp. Bot., 2011, 71, 146–151.CrossRefGoogle Scholar
  11. Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ. Toxicol. Chem., 1997, 16, 1739–1748.CrossRefGoogle Scholar
  12. Gómez, S.R.; Andrades-Moreno, L.; Parra, R.; Valera-Burgos, J.; Real, M.; Mateos-Naranjo, E.; Cox, L.; Cornejo, J. Spartina densiflora demonstrates high tolerance to phenanthrene in soil and reduces it concentration. Mar. Pollut. Bull., 2011, 62, 1800–1808.CrossRefGoogle Scholar
  13. Graan, T.; Ort, D.R. Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim. Biophys. Acta, 1986, 852, 320–330.CrossRefGoogle Scholar
  14. Huang, X.D.; Lorelei, F.; Zeiler, D.; Dixon, G.; Greenberg B.M. Photoinduced toxicity of PAHs to the foliar region of Brassica napus (canola) and Cuumbis sativus (cucumber) in simulated solar radition. Ecotoxicol. Environ. Saf., 1996, 35, 190–197.CrossRefPubMedGoogle Scholar
  15. Huang, X.D.; McConkey, B.J.; Babu, T.S.; Greenberg, B.M. Mechanisms of photoinduced toxicity of photomodified anthracene to plants: inhibition of photosynthesis in the aquatic higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem., 1997, 16, 1707–1715.Google Scholar
  16. Huang, X.D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R.; Greenberg, B.M. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 2004, 130, 465–476.CrossRefPubMedGoogle Scholar
  17. Hwang, H.M.; Wade, T.; Sericano, J.L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos. Environ., 2003, 37, 2259–2267.CrossRefGoogle Scholar
  18. Jajoo, A.; Mekala, N.R.; Tomar, R.S.; Grieco, M.; Tikkanen, M.; Aro, E-M. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity, J. Photochem. Photobiol. B:Biol., 2014, 137, 151–155.CrossRefGoogle Scholar
  19. Joner, E.J.; Corgié, S.C.; Amellal, N.; Leyval, C. Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a stimulated rhizosphere. Soil Biol. Biochem., 2002, 34, 859–864.CrossRefGoogle Scholar
  20. Kamath, R.; Schnoor, J.L.; Alvarez, P.J.J. Effects of plant derived substrates on expression of catabolic genes using a nah-lux reporter. Environ. Sci. Tech., 2004, 38, 1740–1745.CrossRefGoogle Scholar
  21. Kummerová, M.; Barták, M.; Dubová, J.; Tříska, J.; Zubrová, E.; Zezulka, Š. Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology, 2006, 15, 121–131.CrossRefPubMedGoogle Scholar
  22. Kummerová, M.; Vanová, L.; Krulová, J.; Zezulká, S. The use of physiological characteristics for comparison of organic compounds phytotoxicity. Chemosphere, 2008, 71, 2050-2059.CrossRefPubMedGoogle Scholar
  23. Kummerová, M.; Váňová, L.; Fišerová, H.; Klemš, M.; Zezulka, Š.; Krulová, J. Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators. Plant Growth Regul., 2010, 61, 161–174.CrossRefGoogle Scholar
  24. Kummerová, M.; Zezulka, Š.; Váňová, L.; Fišerová, H. Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent. Eur. J. Biol., 2012, 7, 159–166.Google Scholar
  25. Kweon, O.; Kim S.J.; Jones, R.C.; Freeman, J.P.; Adjei, M.D.; Edmondson, R.D.; Cerniglia, C.E. A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J. Bacteriol., 2007, 189, 4635–4647.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lavergne, J.; Briantais, J.M. Photosystem II heterogeneity, In: Oxygeneic Photosynthesis: The light reactions; Ort, R.D.; Yocum, C.F. Eds.; Kluwer Publishers, Dordrecht, The Netherlands, 1996; pp. 265–287.Google Scholar
  27. Li, J. H.; Gao, Y.; Wu, S.C.; Cheung, K.C.; Wang, X.R.; Wong, M. H. Physiological and Biochemical Responses of Rice (Oryza sativa L.) to Phenanthrene and Pyrene. Int. J. Phytorem., 2008, 10, 106–118.CrossRefGoogle Scholar
  28. Liu, H.; Weisman, D.; Ye, Y.B.; Cui, B.; Huang, Y.H.; Colon-Carmona, A.; Wang, Z.H. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci., 2009, 17, 6357–6382.Google Scholar
  29. Marwood, C.A.; Solomon, K.R.; Greenberg, B.M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 2001, 20, 890–898.CrossRefPubMedGoogle Scholar
  30. Marwood, C.A.; Jim, K.T.; Bestari, R.; Gensemer, W.; Solomon, K.R.; Greenberg, B. M. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms. Environ. Toxicol. Chem., 2003, 22, 1075–1085.CrossRefPubMedGoogle Scholar
  31. Mathur, S.; Jajoo, A.; Mehta, P.; Bharti, S. Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol., 2011a, 13, 1–6.CrossRefPubMedGoogle Scholar
  32. Mathur, S.; Allakhverdiev, S.I.; Jajoo, A. Analysis of the temperature stress on the dynamic of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim. Biophys. Acta, 2011b, 1807, 22–29.CrossRefPubMedGoogle Scholar
  33. Mcconkey, B.J.; Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproducts, phenantrene quinone. Environ. Toxicol. Chem., 1997, 16, 892–899.CrossRefGoogle Scholar
  34. Mehta, P.; Allakhverdiev, S.I.; Jajoo, A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth. Res., 2010, 105, 249–255.CrossRefPubMedGoogle Scholar
  35. Muratova, A.Y.; Turkovskaya, O.V.; Huebner, T.; Kuschk, P. Study of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon polluted soil. Appl. Biochem. Microbiol., 2003, 39, 599–605.CrossRefGoogle Scholar
  36. Muratova, A.Y.; Kapitonova, V.V.; Chernyshova, M.P.; Turkovskaya O.V.; Enzymatic activity of alfalfa in a phenanthrene-contaminated environment. World Agr. Sci. Eng. Tech., 2009, 58, 569–574.Google Scholar
  37. Oguntimehin, I.; Sakugawa, H. Fluoranthene fumigation and exogenous scavenging of reactive oxygen intermediates (ROI) in evergreen Japanese red pine seedlings (Pinus Densiflora Sieb. et. Zucc.). Chemosphere, 2008, 72, 747–754.CrossRefPubMedGoogle Scholar
  38. Oguntimehin, I.; Nakatani, N.; Sukugawa, H. Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.). Environ. Pollut., 2008,154, 264–271.CrossRefPubMedGoogle Scholar
  39. Oguntimehin, I.; Eissa, F.; Sakugawa, H. Negative effects of fluoranthene on the eco-physiology of tomato plants (Lycopersicon esculentum Mill). Chemosphere, 2010, 78, 877–884.CrossRefPubMedGoogle Scholar
  40. Rentz, J.A.; Alvarez, P.J.J.; Schnoor, J.L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol., 2004, 6, 574–583.CrossRefPubMedGoogle Scholar
  41. Sverdrup, L.E.; Krogh, P.H.; Nielsen, T.; Kjaer, C.; Stenersen, J. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne) and mustard (Sinapsis alba). Chemosphere,2003, 53, 993–1003.CrossRefPubMedGoogle Scholar
  42. Tomar, R.S.; Jajoo, A. A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology, 2013a, DOI  10.1007/s10646-013-1118-1.PubMedGoogle Scholar
  43. Tomar, R.S.; Jajoo, A. Alteration in PSII heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). Plant Sci., 2013b, 209, 58–63CrossRefGoogle Scholar
  44. Tomar, R.S.; Jajoo, A. Fluranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum), Ecotoxico. Environ. Safety, 2014, 109,110–115.CrossRefGoogle Scholar
  45. Tomar, R.S.; Jajoo, A. Photomodified fluranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat, Ecotoxico. Environ. Safety, 2015, 122, 31–36.CrossRefGoogle Scholar
  46. Tomar, R.S.; Sharma, A.; Jajoo, A. Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. Plant Biol., 2015, 17, 870–876.CrossRefPubMedGoogle Scholar
  47. Tongra, T.; Mehta, P.; Mathur, S.; Agrawal, D.; Bharti, S.; Los, D.A.; Allakhverdiev, S.I.; Jajoo, A. Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. Biosystems, 2011,103, 158–163CrossRefPubMedGoogle Scholar
  48. Tukaj, Z.; Aksmann A. Toxic effect of anthraquinone and phenanthrene quinone upon Scenedesmus strains (green algae) at low and elevated concentration of CO2. Chemosphere,2007, 66, 480–487.CrossRefPubMedGoogle Scholar
  49. Upham, B.L.; Jahnke, L.S. Photooxidative reactions in chloroplast thylakoids. Evidence for a Fenton-type reaction by superoxide or ascorbate. Photosynth. Res., 1986, 8, 235–247.CrossRefPubMedGoogle Scholar
  50. Vácha, R.; Čechmánková, J.; Skála, J. Polycyclic aromatic hydrocarbons in soil and selected plants. Plant Soil Environ., 2010, 56, 434–443.Google Scholar
  51. Weisman, D.; Alkio, M.; Colón-Carmona, A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana. BMC Plant Biol., 2010, 10, 59–71.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wilson, S.C.; Jones, K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut., 1993,81, 229–249.CrossRefPubMedGoogle Scholar
  53. Yoshitomi, K.J.; Shann, J.R. Corn (Zea mays L) root exudates and their impact on 14C-Pyrene minerdization. Soil Biol. Biochem., 2001, 33, 1769–1776.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Life ScienceDevi Ahilya UniversityIndoreIndia

Personalised recommendations