Skip to main content

Protein Assembly Disorders and Protein-Based Inheritance

  • Chapter
  • First Online:
Genetics, Evolution and Radiation

Abstract

Prions are self-perpetuating aggregated fibrous proteins that associated with fatal transmissible spongiform encephalopathies (TSEs) in mammals (including humans ), and manifest themselves as non-Mendelian heritable elements in yeast and other fungi. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPC is necessary for prion replication and for prion-induced neurodegeneration, yet causes of neuronal injury and death are still poorly understood. Here we view of the prion concept, models describing of the replication and transport of prions particles, structural features and functions of the cellular PrP, the prion strain phenomenon, current developments in diagnostics of prion and potential antiprion therapies. Finally, we discuss how prion-like mechanisms may apply to other protein aggregation diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjou KT, Simoneau S, Sales N, Lamoury F, Dormont D, Papy-Garcia D, Barritault D, Deslys JP, Lasmezas CI (2003) A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J Gen Virol 84(Pt 9):2595–2603

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Calvo P, Garcia C, Espinosa JC, Andreoletti O, Torres JM (2015) Prion and prion-like diseases in animals. Virus Res 207:82–93. doi:10.1016/j.virusres.2014.11.026

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Baumann F, Bremer J (2008a) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477. doi:10.1146/annurev.neuro.31.060407.125620

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Sigurdson C, Heikenwaelder M (2008b) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40. doi:10.1146/annurev.pathmechdis.3.121806.154326

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Nuvolone M, Zhu C (2013) The immunobiology of prion diseases. Nat Rev Immunol 13(12):888–902. doi:10.1038/nri3553

    Article  CAS  PubMed  Google Scholar 

  • Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214(5090):764–766

    Article  CAS  PubMed  Google Scholar 

  • Bainbridge J, Walker KB (2005) The normal cellular form of prion protein modulates T cell responses. Immunol Lett 96(1):147–150. doi:10.1016/j.imlet.2004.08.006 S0165-2478(04)00228-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bartz JC, Dejoia C, Tucker T, Kincaid AE, Bessen RA (2005) Extraneural prion neuroinvasion without lymphoreticular system infection. J Virol 79(18):11858–11863. doi:10.1128/JVI.79.18.11858-11863.2005 79/18/11858 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartz JC, Kramer ML, Sheehan MH, Hutter JA, Ayers JI, Bessen RA, Kincaid AE (2007) Prion interference is due to a reduction in strain-specific PrPSc levels. J Virol 81(2):689–697. doi:10.1128/JVI.01751-06 JVI.01751-06 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68(12):7859–7868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop MT, Ritchie DL, Will RG, Ironside JW, Head MW, Thomson V, Bruce M, Manson JC (2008) No major change in vCJD agent strain after secondary transmission via blood transfusion. PLoS ONE 3(8):e2878. doi:10.1371/journal.pone.0002878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blattler T, Brandner S, Raeber AJ, Klein MA, Voigtlander T, Weissmann C, Aguzzi A (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389(6646):69–73. doi:10.1038/37981

    Article  CAS  PubMed  Google Scholar 

  • Borchelt DR, Koliatsos VE, Guarnieri M, Pardo CA, Sisodia SS, Price DL (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269(20):14711–14714

    CAS  PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969. doi:10.1097/NEN.0b013e318232a379

    Article  CAS  PubMed  Google Scholar 

  • Bremer J, Heikenwalder M, Haybaeck J, Tiberi C, Krautler NJ, Kurrer MO, Aguzzi A (2009) Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS ONE 4(9):e7160. doi:10.1371/journal.pone.0007160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390(6661):684–687. doi:10.1038/37783

    Article  CAS  PubMed  Google Scholar 

  • Brown DR, Nicholas RS, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67(2):211–224. doi:10.1002/jnr.10118

    Article  CAS  PubMed  Google Scholar 

  • Buchholz CJ, Bach P, Nikles D, Kalinke U (2006) Prion protein-specific antibodies for therapeutic intervention of transmissible spongiform encephalopathies. Expert Opin Biol Ther 6(3):293–300. doi:10.1517/14712598.6.3.293

    Article  CAS  PubMed  Google Scholar 

  • Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582. doi:10.1038/356577a0

    Article  CAS  PubMed  Google Scholar 

  • Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347 0092-8674(93)90360-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Burger D, Hartsough GR (1965) Encephalopathy of mink. II. Experimental and natural transmission. J Infect Dis 115(4):393–399

    Article  CAS  PubMed  Google Scholar 

  • Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206. doi:10.1016/j.cell.2005.02.011 S0092-8674(05)00156-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Castilla J, Morales R, Saa P, Barria M, Gambetti P, Soto C (2008) Cell-free propagation of prion strains. EMBO J 27(19):2557–2566. doi:10.1038/emboj.2008.181 emboj2008181 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443(7113):803–810. doi:10.1038/nature05294 nature05294 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 30(31):7672–7680

    Article  CAS  PubMed  Google Scholar 

  • Caughey B, Raymond GJ, Bessen RA (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273(48):32230–32235

    Article  CAS  PubMed  Google Scholar 

  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308(5727):1435–1439. doi:10.1126/science.1110837 308/5727/1435 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG (2006) Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 27(5):777–787. doi:10.1016/j.neuro.2006.06.004 S0161-813X(06)00160-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602):685–690. doi:10.1038/383685a0

    Article  CAS  PubMed  Google Scholar 

  • Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  PubMed  Google Scholar 

  • Crozet C, Lin YL, Mettling C, Mourton-Gilles C, Corbeau P, Lehmann S, Perrier V (2004) Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutations. J Cell Sci 117(Pt 23):5591–5597. doi:10.1242/jcs.01484 jcs.01484 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daude N, Marella M, Chabry J (2003) Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 116(Pt 13):2775–2779. doi:10.1242/jcs.00494 jcs.00494 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425(6959):717–720. doi:10.1038/nature01979 nature01979 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Deleault NR, Geoghegan JC, Nishina K, Kascsak R, Williamson RA, Supattapone S (2005) Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem 280(29):26873–26879. doi:10.1074/jbc.M503973200 M503973200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Dickinson AG, Meikle VM, Fraser H (1968) Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J Comp Pathol 78(3):293–299 0021-9975(68)90005-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Farquhar C, Dickinson A, Bruce M (1999) Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 353(9147):117. doi:10.1016/S0140-6736(98)05395-1 S0140-6736(98)05395-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Federoff HJ (2009) Development of vaccination approaches for the treatment of neurological diseases. J Comp Neurol 515(1):4–14. doi:10.1002/cne.22034

    Article  CAS  PubMed  Google Scholar 

  • Gajdusek DC, Zigas V (1957) Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population. N Engl J Med 257(20):974–978

    Article  CAS  PubMed  Google Scholar 

  • Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209(5025):794–796

    Article  CAS  PubMed  Google Scholar 

  • Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20(21):5863–5875. doi:10.1093/emboj/20.21.5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs CJ Jr, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161(839):388–389

    Article  PubMed  Google Scholar 

  • Gilch S, Nunziante M, Ertmer A, Schatzl HM (2007) Strategies for eliminating PrP(c) as substrate for prion conversion and for enhancing PrP(Sc) degradation. Vet Microbiol 123(4):377–386. doi:10.1016/j.vetmic.2007.04.006 S0378-1135(07)00174-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P, Cortelli P, Julien J, Vital C, Pendelbury WW et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258(5083):806–808

    Article  CAS  PubMed  Google Scholar 

  • Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Hadlow WJ (1959) Myopathies of livestock. Lab Invest 8:1478–1498

    CAS  PubMed  Google Scholar 

  • Hajj GN, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KC, Juliano MA, Jacchieri SG, Zanata SM, Martins VR (2007) Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci 120(Pt 11):1915–1926. doi:10.1242/jcs.03459 jcs.03459 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hay B, Prusiner SB, Lingappa VR (1987) Evidence for a secretory form of the cellular prion protein. Biochemistry 26(25):8110–8115

    Article  CAS  PubMed  Google Scholar 

  • Heikenwalder M, Julius C, Aguzzi A (2007) Prions and peripheral nerves: a deadly rendezvous. J Neurosci Res 85(12):2714–2725. doi:10.1002/jnr.21246

    Article  CAS  PubMed  Google Scholar 

  • Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, Doey LJ, Lantos P (1997) The same prion strain causes vCJD and BSE. Nature 389(6650):448–450, 526. doi:10.1038/38925

    Google Scholar 

  • Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20(21):5876–5886. doi:10.1093/emboj/20.21.5876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inge-Vechtomov SG (2003) Template principle in biology (the past, the present, the future?). Ecol Genet 1:6–15

    Google Scholar 

  • Inge-Vechtomov SG, Galkin AP, Sopova YV, Rubel AA (2012) Prions, “Protein based inheritance” and epigenetics. In: Zakiyan SM, Vlasov VV, Dementieva EV (eds) Epigenetics, vol 21. Publishing House SB RAS, Morskoy pr. 2, Novosibirsk, Novosibirsk region, p 481

    Google Scholar 

  • Jeffrey M, Wells GA (1988) Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet Pathol 25(5):398–399

    Article  CAS  PubMed  Google Scholar 

  • Karapetyan YE, Saa P, Mahal SP, Sferrazza GF, Sherman A, Sales N, Weissmann C, Lasmezas CI (2009) Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay. PLoS ONE 4(5):e5730. doi:10.1371/journal.pone.0005730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimberlin RH, Hall SM, Walker CA (1983) Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61(3):315–325

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JK, Wells GA, Wilesmith JW, Cunningham AA, Jackson SI (1990) Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater kudu (Tragelaphus strepsiceros). Vet Rec 127(17):418–420

    CAS  PubMed  Google Scholar 

  • Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 65(11):6292–6295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein MA, Frigg R, Flechsig E, Raeber AJ, Kalinke U, Bluethmann H, Bootz F, Suter M, Zinkernagel RM, Aguzzi A (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390(6661):687–690. doi:10.1038/37789

    CAS  PubMed  Google Scholar 

  • Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A (2001) Complement facilitates early prion pathogenesis. Nat Med 7(4):488–492. doi:10.1038/86567 86567 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474. doi:10.1038/370471a0

    Article  CAS  PubMed  Google Scholar 

  • Koltsov NK (1936) Hereditary molecules. In: Organization of cell. The collection experimental studies, of articles and speeches. 1903–1935. M-L Biomedgiz, pp 585–620

    Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506. doi:10.1038/nm1747

    Article  CAS  PubMed  Google Scholar 

  • Kunzi V, Glatzel M, Nakano MY, Greber UF, Van Leuven F, Aguzzi A (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22(17):7471–7477 22/17/7471 [pii]

    CAS  PubMed  Google Scholar 

  • Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, Masullo C, Pocchiari M (1992) Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol 73(Pt 3):661–665

    Article  CAS  PubMed  Google Scholar 

  • Lansbury PT Jr, Caughey B (1995) The chemistry of scrapie infection: implications of the ‘ice 9’ metaphor. Chem Biol 2(1):1–5 1074-5521(95)90074-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. doi:10.1038/nature07761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leucht C, Simoneau S, Rey C, Vana K, Rieger R, Lasmezas CI, Weiss S (2003) The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in scrapie-infected neuronal cells. EMBO Rep 4(3):290–295. doi:10.1038/sj.embor.embor768 embor768 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728. doi:10.1152/physrev.00007.2007 88/2/673 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98(26):14955–14960. doi:10.1073/pnas.011578098 011578098 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–187. doi:10.1007/s00401-009-0633-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7(3):e55. doi:10.1371/journal.pbio.1000055 08-PLBI-RA-3379 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Manson J, West JD, Thomson V, McBride P, Kaufman MH, Hope J (1992) The prion protein gene: a role in mouse embryogenesis? Development 115(1):117–122

    CAS  PubMed  Google Scholar 

  • Manuelidis L (1998) Vaccination with an attenuated Creutzfeldt-Jakob disease strain prevents expression of a virulent agent. Proc Natl Acad Sci U S A 95(5):2520–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS, Grafstein B (1968) Fast and slow components in axonal transport of protein. J Cell Biol 38(3):494–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan J (1922) Scrapie in sheep. Scott J Agric 5:365–375

    Google Scholar 

  • Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288(5469):1257–1259 8516 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morales R, Abid K, Soto C (2007) The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta 1772(6):681–691. doi:10.1016/j.bbadis.2006.12.006 S0925-4439(06)00272-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morel E, Andrieu T, Casagrande F, Gauczynski S, Weiss S, Grassi J, Rousset M, Dormont D, Chambaz J (2005) Bovine prion is endocytosed by human enterocytes via the 37 kDa/67 kDa laminin receptor. Am J Pathol 167(4):1033–1042 167/4/1033 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22(5):482–487. doi:10.1016/j.semcdb.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Schiffmann A, Korth C (2008) Vaccine approaches to prevent and treat prion infection: progress and challenges. BioDrugs 22(1):45–52 2215 [pii]

    Article  PubMed  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE et al (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40(4):735–746 0092-8674(85)90333-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parchi P, Gambetti P (1995) Human prion diseases. Curr Opin Neurol 8(4):286–293

    Article  CAS  PubMed  Google Scholar 

  • Parchi P, Zou W, Wang W, Brown P, Capellari S, Ghetti B, Kopp N, Schulz-Schaeffer WJ, Kretzschmar HA, Head MW, Ironside JW, Gambetti P, Chen SG (2000) Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A 97(18):10168–10172 97/18/10168 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parchi P, de Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, Gelpi E, Giaccone G, Hauw JJ, Hoftberger R, Ironside JW, Jansen C, Kovacs GG, Rozemuller A, Seilhean D, Tagliavini F, Giese A, Kretzschmar HA (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 124(4):517–529. doi:10.1007/s00401-012-1002-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters C, Espinoza MP, Gallegos S, Opazo C, Aguayo LG (2015) Alzheimer’s Abeta interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiol Aging 36(3):1369–1377. doi:10.1016/j.neurobiolaging.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Eigenbrod S, Al-Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 116(12):3204–3210. doi:10.1172/JCI29236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prcina M, Kontsekova E (2011) Has prion protein important physiological function? Med Hypotheses 76(4):567–569. doi:10.1016/j.mehy.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344(20):1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB, Scott MR (1997) Genetics of prions. Annu Rev Genet 31:139–175. doi:10.1146/annurev.genet.31.1.139

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35(2 Pt 1):349–358 0092-8674(83)90168-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11(4):429–433. doi:10.1038/nm1205 nm1205 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11(4):423–428. doi:10.1038/nm1207 nm1207 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Relano-Gines A, Gabelle A, Lehmann S, Milhavet O, Crozet C (2009) Gene and cell therapy for prion diseases. Infect Disord Drug Targets 9(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Muller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, Multhaup G, Winklhofer KF, Tatzelt J (2011) The cellular prion protein mediates neurotoxic signalling of beta-sheet-rich conformers independent of prion replication. EMBO J 30(10):2057–2070. doi:10.1038/emboj.2011.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-321). Nature 382(6587):180–182. doi:10.1038/382180a0

    Article  CAS  PubMed  Google Scholar 

  • Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413(2):282–288 S0014-5793(97)00920-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813. doi:10.1038/35081095

    Article  CAS  PubMed  Google Scholar 

  • Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354. doi:10.1083/jcb.200409127 jcb.200409127 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdson CJ, Manco G, Schwarz P, Liberski P, Hoover EA, Hornemann S, Polymenidou M, Miller MW, Glatzel M, Aguzzi A (2006) Strain fidelity of chronic wasting disease upon murine adaptation. J Virol 80(24):12303–12311. doi:10.1128/JVI.01120-06 JVI.01120-06 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261. doi:10.1038/nature03989 nature03989 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kong Q, Luo X, Petersen RB, Meyerson H, Singh N (2009) Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS ONE 4(7):e6115. doi:10.1371/journal.pone.0006115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solassol J, Crozet C, Lehmann S (2003) Prion propagation in cultured cells. Br Med Bull 66:87–97

    Article  CAS  PubMed  Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240 0092-8674(87)90150-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103(9):3416–3421. doi:10.1073/pnas.0511290103 0511290103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein CA, Khan TM, Khaled Z, Tonkinson JL (1995) Cell surface binding and cellular internalization properties of suramin, a novel antineoplastic agent. Clin Cancer Res 1(5):509–517

    CAS  PubMed  Google Scholar 

  • Stevens DJ, Walter ED, Rodriguez A, Draper D, Davies P, Brown DR, Millhauser GL (2009) Early onset prion disease from octarepeat expansion correlates with copper binding properties. PLoS Pathog 5(4):e1000390. doi:10.1371/journal.ppat.1000390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37(20):7185–7193. doi:10.1021/bi972827k bi972827k [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sy MS, Gambetti P, Wong BS (2002) Human prion diseases. Med Clin North Am 86(3):551–571, vi–vii

    Google Scholar 

  • Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner SB (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274(5295):2079–2082

    Article  CAS  PubMed  Google Scholar 

  • Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL (2003) Efficient and specific down-regulation of prion protein expression by RNAi. Biochem Biophys Res Commun 305(3):548–551 S0006291X03008052 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380(6575):639–642. doi:10.1038/380639a0

    Article  CAS  PubMed  Google Scholar 

  • Vana K, Zuber C, Nikles D, Weiss S (2007) Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 27(1):107–128. doi:10.1007/s10571-006-9121-1

    Article  CAS  PubMed  Google Scholar 

  • Warner RG, Hundt C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277(21):18421–18430. doi:10.1074/jbc.M110406200 M110406200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Weissmann C (1999) Molecular genetics of transmissible spongiform encephalopathies. J Biol Chem 274(1):3–6

    Article  CAS  PubMed  Google Scholar 

  • Wells GA, Scott AC, Johnson CT, Gunning RF, Hancock RD, Jeffrey M, Dawson M, Bradley R (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121(18):419–420

    Article  CAS  PubMed  Google Scholar 

  • Whatley SA, Powell JF, Politopoulou G, Campbell IC, Brammer MJ, Percy NS (1995) Regulation of intracellular free calcium levels by the cellular prion protein. NeuroReport 6(17):2333–2337

    Article  CAS  PubMed  Google Scholar 

  • White AR, Hawke SH (2003) Immunotherapy as a therapeutic treatment for neurodegenerative disorders. J Neurochem 87(4):801–808 2064 [pii]

    Article  CAS  PubMed  Google Scholar 

  • White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A 105(29):10238–10243. doi:10.1073/pnas.0802759105 0802759105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5(8):611–618. doi:10.1038/nrmicro1708 nrmicro1708 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347(9006):921–925

    Article  CAS  PubMed  Google Scholar 

  • Williams ES, Young S (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis 16(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR (2001) Aberrant metal binding by prion protein in human prion disease. J Neurochem 78(6):1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JM (1990) Spongiform encephalopathy in a cat. Vet Rec 126(20):513

    Google Scholar 

  • Zhang CC, Steele AD, Lindquist S, Lodish HF (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci U S A 103(7):2184–2189. doi:10.1073/pnas.0510577103 0510577103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zomosa-Signoret V, Arnaud JD, Fontes P, Alvarez-Martinez MT, Liautard JP (2008) Physiological role of the cellular prion protein. Vet Res 39(4):9. doi:10.1051/vetres:2007048 v07242 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zou WQ, Zheng J, Gray DM, Gambetti P, Chen SG (2004) Antibody to DNA detects scrapie but not normal prion protein. Proc Natl Acad Sci U S A 101(5):1380–1385. doi:10.1073/pnas.0307825100 0307825100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber C, Mitteregger G, Schuhmann N, Rey C, Knackmuss S, Rupprecht W, Reusch U, Pace C, Little M, Kretzschmar HA, Hallek M, Buning H, Weiss S (2008) Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 89(Pt 8):2055–2061. doi:10.1099/vir.0.83670-0 89/8/2055 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported by grant 14-50-00069 from Russian Science Foundation and by grants 14-04-08159, 15-04-06650 from Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander A. Rubel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rubel, A.A., Saifitdinova, A.F., Romanova, N.V. (2016). Protein Assembly Disorders and Protein-Based Inheritance. In: Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C. (eds) Genetics, Evolution and Radiation. Springer, Cham. https://doi.org/10.1007/978-3-319-48838-7_8

Download citation

Publish with us

Policies and ethics