Note on Backward Uniqueness for a Class of Parabolic Equations

Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this note, we review some recent results on the backward uniqueness for solutions of parabolic equations of second and higher order. The main focus is the connection of the backward uniqueness property with the regularity of the principal part coefficients measured by moduli of continuity. We announce a new backward uniqueness result for higher order equations.

Keywords

Backward uniqueness Bony’s paraproduct Carleman estimates Higher order equations Parabolic equations Rough coefficients 

Mathematics Subject Classification (2010)

Primary 35Bxx 35Kxx; Secondary 35K25 35K30 

References

  1. 1.
    C. Bardos, L. Tartar, Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines. Arch. Ration. Mech. Anal. 50 (1), 10–25 (1973)CrossRefMATHGoogle Scholar
  2. 2.
    J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. l’École Normale Supérieure 14 (2), 209–246 (1981)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. Del Santo, M. Prizzi, Backward uniqueness for parabolic operators whose coefficients are non-Lipschitz continuous in time. J. Math. Pures Appl. 84 (4), 471–491 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D. Del Santo, M. Prizzi, On the backward uniqueness property for a class of parabolic operators, in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 69 (Birkhäuser, Boston, 2007), pp. 95–105Google Scholar
  5. 5.
    D. Del Santo, M. Prizzi, A new result on backward uniqueness for parabolic operators. Ann. Mate. Pura Appl. 194 (2), 387–403 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. Del Santo, Ch.P. Jäh, M. Paicu, Backward-uniqueness for parabolic operators with non-Lipschitz coefficients. Osaka J. Math. 52 (3), 793–817 (2015)MathSciNetMATHGoogle Scholar
  7. 7.
    Ch.P. Jäh, Backward uniqueness for a class of higher order parabolic equations with low-regular coefficients (in preparation)Google Scholar
  8. 8.
    Ch. P. Jäh, Uniqueness and non-uniqueness in the Cauchy problem for elliptic and backward-parabolic operators, Diploma Thesis, Technische Universität Bergakademie Freiberg, 2011Google Scholar
  9. 9.
    Ch.P. Jäh, Some results on the uniqueness and conditional stability in the Cauchy problem for backward-parabolic equations with low-regular coefficients, PhD Thesis, Technische Universität Bergakademie Freiberg, 2015Google Scholar
  10. 10.
    J.-L. Lions, B. Malgrange, Sur l’unicité rétrograde dans les problèmes mixtes paraboliques. Math. Scand. 8, 277–286 (1960)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G. Métivier, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5 (Edizioni della Normale, Pisa, 2008)Google Scholar
  12. 12.
    K. Miller, Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients. Arch. Ration. Mech. Anal. 54 (2), 105–117 (1973)MATHGoogle Scholar
  13. 13.
    A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. l’Acad. Polon. Sci. Sér. Sci. Math. 11, 95–100 (1963)MathSciNetMATHGoogle Scholar
  14. 14.
    S. Tarama, Local uniqueness in the Cauchy problem for second order elliptic equations with non-Lipschitzian coefficients. Publ. Res. Inst. Math. Sci. Kyoto University 33, 167–188 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    S. Tarama, Backward uniqueness for heat equations with coefficients of bounded variation in time. Electron. J. Differ. Equ. 189, 1–14 (2013)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough UniversityLeicestershireUK

Personalised recommendations