Skip to main content

Abstract

MgCl2-containing salt is one of the candidates for the solar thermal energy storage applications. To protect the structural alloy from corrosion, the addition of Mg to salt as a corrosion inhibitor is considered. Melting point, heat capacity, enthalpy, entropy and Gibbs energy of MgCl2 with different amount of Mg are studied in this paper. Depression of melting point is calculated using a derivation of Raoul-Van’t Hoff formula. The MgCl2 rich phase diagram is constructed. The MgCl2 with a small amount of Mg addition shows no significant effect on melting point of the salt mixture. Moreover, it can be a candidate as heat transferring fluid for MgCl2 in solar thermal energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Takahashi, R. Sakamoto, M. Kamimoto, Heat Capacities and Latent Heat of LiNO3, NaNO3 & KNO3, International Journal of Thermophysics, Vol. 9, 1998. pp. 1081–1090.

    Article  Google Scholar 

  2. Araki, N., et al. “Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts.” International journal of thermophysics Vol. 9, 1988. pp. 1071–1080.

    Article  Google Scholar 

  3. Williams, D. F., Assessment of candidate molten salt coolants for the NGNP/NHI Heat-Transfer Loop, ORNL/TM-2006/69, 2006. pp. 1–44.

    Google Scholar 

  4. Sridharan, Kumar, et al. Liquid Salts as Media for Process Heat Transfer from VHTR’s: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating. No. DOE/ID14826. University of Wisconsin, Madison, 2012.

    Book  Google Scholar 

  5. Susskind, H., et al. Corrosion Studies for a Fused Salt-Liquid Metal Extraction Process for the Liquid Metal Fuel Reactor. No. BNL-585. Brookhaven National Lab., Upton, NY, 1960.

    Book  Google Scholar 

  6. Forsberg, Charles W., Per F. Peterson, and Haihua Zhao. “High-temperature liquid-fluoride-salt closed-Brayton-cycle solar power towers.” Journal of Solar Energy Engineering Vol. 129.2, 2007. pp. 141–146.

    Article  Google Scholar 

  7. Sohal, Manohar S., et al. “Engineering database of liquid salt thermophysical and thermochemical properties.” Idaho National Laboratory, Idaho Falls, 2010.

    Book  Google Scholar 

  8. Heine, D., F. Heess, and D. Steiner. “Investigation of latent heat storage materials in the medium and high temperature range.” NASA STI/Recon Technical Report N 83: 16933, 1982.

    Google Scholar 

  9. Sellers, R. S., et al. “Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions.” Proc. Int. Conf. Advances in Nuclear Power Plants. Vol. 12, 2012. pp. 12189.

    Google Scholar 

  10. Li, Xiao-li, et al. “High-temperature corrosion behavior of Ni-16Mo-7Cr-4Fe superalloy containing yttrium in molten LiF-NaF-KF salt.” Journal of Nuclear Materials, Vol. 464, 2015. pp. 342–345.

    Article  Google Scholar 

  11. J.A. Lane, H.G. MacPherson, F. Moslan (Eds.), Fluid Fuel Reactors, Addison-Wesley, 1958

    Google Scholar 

  12. Arenas, M. A., A. Conde, and J. J. De Damborenea. “Cerium: a suitable green corrosion inhibitor for tinplate.” Corrosion Science Vol. 44, 2002. pp. 511–520.

    Article  Google Scholar 

  13. Atkins, Peter, and Julio De Paula. Elements of physical chemistry. Oxford University Press, 2012.

    Google Scholar 

  14. Chase, Malcolm W., et al. JANAF thermochemical tables, 1975 supplement. Journal of physical and chemical reference data Vol. 4.1, 1975. pp. 1–176.

    Article  Google Scholar 

  15. Bredig, M. A. Mixtures of metals with molten salts. No. ORNL-3391. Oak Ridge National Lab., Tenn., 1963.

    Book  Google Scholar 

  16. Bredig, M. A., J. W. Johnson, and Wm T. Smith Jr. “Miscibility of Liquid Metals with Salts. I. The Sodium-Sodium Halide Systems1.” Journal of the American Chemical Society Vol. 77.2, 1955. pp. 307–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Peng, Y., Reddy, R.G. (2016). Melting Point and Heat Capacity of MgCl2 + Mg Salts. In: Reddy, R.G., Chaubal, P., Pistorius, P.C., Pal, U. (eds) Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48769-4_56

Download citation

Publish with us

Policies and ethics