Skip to main content
  • 5531 Accesses

Abstract

Electrorheology of Ti-bearing slag was investigated by a reconstructive equipment at 1723K. The slag samples were based on slag of Panzhihua Steel and the viscosity was measured with different composition of TiC. The constitutive equations which simulated the Herschel-Bulkley model were established by the relationship between shear rate and shear stress of slag, thus the fluid type was confirmed under the condition of different electric field intensity. The result was that the slag sample containing TiC had an obvious phenomenon of electrorheology, the increase of electric field intensity gave rise to the increase of viscosity and shear stress. It can be extracted from the constitutive equations of 4% TiC slag that the fluid type converted into a Bingham fluid with application of the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Plachy, M. Sedlacik, V Pavlinek, M. Trchovâ, Z. Morávková, and J. Stejskal,“Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology,” Chem. Eng J., 256(2014), 398–406.

    Article  Google Scholar 

  2. Y. Hirose, Y Ostubo,“Electrorheology of suspensions of poly(ethylene glycol)/poly(vinyl acetate) blend particles,” Colloids Surf., A, 414(2012), 486–491.

    Article  Google Scholar 

  3. K. Shin, D. Kim, J.C. Cho, H.S. Lim, J.W. Kim, and K.D. Suh,“Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties,” J. Colloid Interface Sci., 374(2012), 18–24.

    Article  Google Scholar 

  4. J.B. Yin, Y.J. Shui, R.T. Chang, and X.P. Zhao,“Graphene-supported carbonaceous dielectric sheets and their electrorheology,” Carbon, 50(2012), 5247-rpl.

    Article  Google Scholar 

  5. M.M. Ramos-Tejada, M.J. Espin, R. Perea, and A.V. Delgado,“Electrorheology of suspensions of elongated goethite particles,” J. Non-Newtonian Fluid Mech., 159(2009), 34–40.

    Article  Google Scholar 

  6. D. Xie, Y. Mao, and Y. Zhu,“Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions,” Paper presented at the VII Int. Conf. on Molten Slags Fluxes and Salts, the South African Mining and Metallurgy, Cape Town, South Africa, 2004), 43.

    Google Scholar 

  7. YL. Zhen, G.H. Zhang, and K.C. Chou,“Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 Melts Containing TiC Particles,” Metall. Mater. Trans. B, 46B(2015), 155–161.

    Article  Google Scholar 

  8. T. Jiang, D.M. Liao, M. Zhou, Q.Y Zhang, H.R. Yue, S.T. Yang, P.N. Duan, and X.X. Xue,“Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag,”/Int/. J. Miner. Metall. Mater., 22(2015), 804–810.

    Article  Google Scholar 

  9. Y Wang, F. Luo, W.C. Zhou, and D.M. Zhu,“Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range,” Ceram. Int., 40(2014), 10749–10754.

    Article  Google Scholar 

  10. T. Jiang, H.R. Yue, X.X. Xue, P.N. Duan, and Q.Y Zhang, CN. Patent, CN.201520798586.0, 2015–10–14.

    Google Scholar 

  11. H.S. Tang, D.M. Kalyon,“Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers,” Rheol. Acta., 43(2004), 80–88.

    Article  Google Scholar 

  12. R.Z. Liu, K. Wu, Y. Zhao, and M.F. Jiang,“Measurement of Rheologie Characteristics of Melts,” J. Northeast. Univ. Nat. Sci., 25(2004), 570–573.

    Google Scholar 

  13. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and CG. Bai,“Effect of Cr2O3 Addition on Viscosity and Structure of Ti-bearing Blast Furnace Slag,”ISI Int., 55(2015), 1367–1376.

    Article  Google Scholar 

  14. C.G. Raptis, A. Patsidis, and G.C. Psarras,“Electrical response and functionality of polymer matrix-titanium carbide composites,” Express Polymer Letters, 4(2010), 234–243.

    Article  Google Scholar 

  15. J.K.G. Dhont, and K. Kang,“Electric-field-induced polarization of the layer of condensed ions on cylindrical colloids,”Eur. Phys. J. E, 34(2011), 1–19.

    Article  Google Scholar 

  16. C.R. Lin, W.J. Chen,“The links-nodes-blobs model for shear-thinning-yield-stress fluids,” Cottoid. Polym. Sci., 277(1999), 1019–1025.

    Google Scholar 

  17. Y. Satio, H. Ogura, and Y. Otsubo,“Rheological Behavior of Silica Suspensions in Aqueous Solutions of Associating Polymer,” Colloid. Polym. Sci., 286(2008), 1537–1544.

    Article  Google Scholar 

  18. A. Lengálová, V. Pavlínek, P. Sáha, J. Stejskal, and O. Quadrat,“Electrorheology of polyaniline-coated inorganic particles in silicone oil,” J. Colloid Interface Sci., 258(2013), 174–178.

    Article  Google Scholar 

  19. D.J. Klingenberg, CF. Zukoski,“Studies on the steady shear behavior of electrorheological suspensions,” Langmuir, 6(1990), 15–24.

    Article  Google Scholar 

  20. J. W. Goodwin, G. M. Markham, and B. Vincent,“Studies on Model Electrorheological Fluids,” J. Phys. Chem. B, 101(1997), 1961–1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Jiang, T., Yue, H., Xue, X., Duan, P. (2016). Electrorheology of Ti-Bearing Slag with Different Composition of TiC at 1723K. In: Reddy, R.G., Chaubal, P., Pistorius, P.C., Pal, U. (eds) Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48769-4_44

Download citation

Publish with us

Policies and ethics