Advertisement

REWAS 2013 pp 309-322 | Cite as

Pt-doped TiO2 nanoparticles for photocatalytic degradation of phenols in wastewater

  • M. A. Barakat
  • R. I. Al-Hutailah
  • E. Qayyum
  • J. N. Kuhn

Abstract

Pt-doped TiO2 nanoparticles catalysts were synthesized and evaluated for UV photocatalytic degradation of phenol and 2-chlorophenol (2-CP) in synthetic wastewater solutions. The catalysts were synthesized by immobilizing colloidal Pt nanoparticles onto titanium dioxide (rutile TiO2). Several analytical tools, such as standard BET isotherms, X-ray diffraction (XRD), transmission electron microscope (TEM), were used to investigate the specific surface area, structure, and size distribution of the catalysts and its components. The catalytic activity was measured in a batch photoreactor containing solutions of phenol and 2-CP independently, with UV irradiation of 450 W. UV-visible spectrophotometer was used for analyzing the concentration of phenols in solution at different time intervals during the photodegradation experiment. Parameters affecting the photocatalytic process such as concentration of the catalyst, solution pH, and phenols concentration have been investigated. Results obtained revealed that Pt/TiO2 showed a higher activity for UV- photocatalytic degradation of both phenol and 2-CP pollutants in solution (as compared to the rutile TiO2).. The degradation efficiency values were 87.7 and 100% for both of phenol and 2-Cp, respectively, under optimized conditions (0.5 g/L catalyst with a pollutant concentration of 50 mg/L after irradiation time of 180 minutes).

Key words

Wastewater phenolic pollutants photocatalytic degradation Pt/TiO2 nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. 2000 Rev. 1, 1e21.Google Scholar
  2. 2.
    M. A. Barakat, Y. T. Chen, C. P. Huang, Removal of toxic cyanide and Cu (II) ions from water by illuminated TiO2 catalyst J. Applied catalysis B: Environmental 2004, 53,13–20.CrossRefGoogle Scholar
  3. 3.
    U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. 2008 Rev. 9, 1e12.Google Scholar
  4. 4.
    S. Malato, Ez, P. Ferna´ndez-Iba´n˜, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 2009,147, 1e59.Google Scholar
  5. 5.
    A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Compostrini, M. Ischia, R. Ceccato, Palmisano. L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermo-hydrolysis of TiCl4 in aqueous chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 317, 366–376.CrossRefGoogle Scholar
  6. 6.
    M.A. Barakat, Adsorption behavior of copper and cyanide ions at TiO2–solution interface. J. Colloid and Interface Science 2005, 291, 345–352.CrossRefGoogle Scholar
  7. 7.
    J.M. Hermann, Heterogenous photocatalysis: fundamentals and applications to the removal of various types of aquas pollutants. Catal.Today 1999,53: 115–129.CrossRefGoogle Scholar
  8. 8.
    C. Hu, Y.Z. Wang, H.X. Tang, Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere 2000 41: 1205–1209.CrossRefGoogle Scholar
  9. 9.
    I. E. Braun, M. S. Pelizzetti, (ed.), Photochemical Conversion and Storage of Solar Energy, Kluwer, Dordrecht. 1991.Google Scholar
  10. 10.
    N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol 1995, A. 85: 247–255.CrossRefGoogle Scholar
  11. 11.
    I. Shiyanovskaya, M. Hepel, Isotopic effects in cation-injected electrochromic films. J. Electrochem. Soc. 1998, 145: 1023–1028.CrossRefGoogle Scholar
  12. 12.
    K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of Transparent particulate MoO3/TiO2 and WO3/TiO2 film and their photocatalytic properties. Chem. Mater. 2001, 13: 2349–2355.CrossRefGoogle Scholar
  13. 13.
    B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts. J. Mol. Catal. A: Chem. 2001,169: 147–155.CrossRefGoogle Scholar
  14. 14.
    I. Bedja, P.V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites. J. Phys. Chem. 1995. 99: 9182–9188.CrossRefGoogle Scholar
  15. 15.
    A. A. Aal, M.A. Barakat, R.M. Mohamed Electrophoreted Zn-TiO2–ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Applied Surface Science 2008, 254: 4577–4583.CrossRefGoogle Scholar
  16. 16.
    Y. Cao, H. Tan, T. Shi, T. Tang, J. Li, Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. Journal of Chemical Technology and Biotechnology 2008, 83:546–552CrossRefGoogle Scholar
  17. 17.
    M.M. Behnajady, N. Modirshahla, B. Rad, Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods. Global NEST Journal 2008, 10: 1–7.Google Scholar
  18. 18.
    A.M. Barakat, M.A. Kanjwal, S.S. Al-Deyab, I.S. Chronakis, H.Y. Kim, Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers. Materials Sciences and Applications 2011, 2: 1188–1193.CrossRefGoogle Scholar
  19. 19.
    Q. Xiangchun, S. Hanchang, W. Jainlong, Q. Yi, Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. Chemosphere 2003, 50: 1069–1074.CrossRefGoogle Scholar
  20. 20.
    K.D. Raung, Theory and practice for the removal of phenols in wastewater. Industrial Pollution Prevention and Control 1984, 3 (3): 88–103.Google Scholar
  21. 21.
    M. R. Heidi, M. W. Chien, Y. Tao, K. Jun-Kyoung, D. M. William, Catalytic hyrodechlorination of chlorophenols in aqueous solution under mild conditions. 2004, Applied Catalysis A: General, 271: 137–143.CrossRefGoogle Scholar
  22. 22.
    D. Liu, R.J. Maguire, G. Pacepavicius, B.J. Dutka, Biodegradation of recalcitrant chlorophenols by cometabolism. Environmental Toxicology and Water Quality 1991, 6: 85–95.CrossRefGoogle Scholar
  23. 23.
    D.H. Han, S.Y. Cha, H.Y. Yang, Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study, Water Research 2004., 38, 2782.CrossRefGoogle Scholar
  24. 24.
    A. Alinsafi, F. Evenou, E.M. Abdulkarim, M.N. P. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photo catalysis. 2007, Dyes and Pigments, 74, 439–445.CrossRefGoogle Scholar
  25. 25.
    R.H. Mills, D. W. Davies, Chem. Soc. Rev. 1993, 22, 417–425.CrossRefGoogle Scholar
  26. 26.
    E. Bessa, G.L. Sant’Anna, M. Dezotti, Photocatalytic/H2O2 treatment of oil field produced waters. Appl. Catal. B: Environ. 2001, 29, 125–134.CrossRefGoogle Scholar
  27. 27.
    E.R.L. Tiburtius, P. Peralta-Zamora, A. Emmel, Treatment of gasolinecontaminated waters by advanced oxidation processes. J. Hazard. Mater. 2005, 126, 86–90.CrossRefGoogle Scholar
  28. 28.
    L.-H. Cho, Y.-G. Kim, J.-K. Yang, N.-H. Lee, S.-M. Lee, Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO2 photocatalysis and solar photo-Fenton. J. Environ. Sci. Health A 2006, 41, 457–473.CrossRefGoogle Scholar
  29. 29.
    S. Contreras, M. Rodriguez, F. Al Momani, C. Sans, S. Esplugas, Contribution of the ozonation pretreatment to the biodegradation of aqueous solutions of 2,4 dichlorophenol. Water Research 2003, 37: 3164–3171.CrossRefGoogle Scholar
  30. 30.
    Ch. Wang, Ch. M. Lee, Ch. J. Lu, M. Sh. Chuang, Ch. Z. Huang, Biodegradation of 2,4,6 — trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 2000, 41: 1873–1879.CrossRefGoogle Scholar
  31. 31.
    R.U. Edgehill, R.F. Finn, Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol 1982, 16:179–184.CrossRefGoogle Scholar
  32. 32.
    M.P. Ormad, J.L. Ovelleiro, J. Kiwi, Photocatalytic degradation of concentrated solutions of 2,4-dichlorophenol using low energy light: identification of intermediates. Applied Catalysis B:Environmental 2001., 32 (3): 157–166.CrossRefGoogle Scholar
  33. 33.
    Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chem. Mater. 2000, 12, 1622–1627.CrossRefGoogle Scholar
  34. 34.
    T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition. J. Phys. Chem. B 1999, 103, 3818–3827.CrossRefGoogle Scholar
  35. 35.
    R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang, G. A. Somorjai, High-Surface-Area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica. Journal of Physical Chemistry B 2005, 109, 2192–2202.CrossRefGoogle Scholar
  36. 36.
    H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G. A. Somorjai, Hydrothermal growth of Mesporous SBA-15 Silica in the Presence of PVP-stabilized Pt Nanoparticles: Synthesis, Characterization, and Catalytic Properties. Journal of American Chemical Society 2006, 128, 3027–3037.CrossRefGoogle Scholar
  37. 37.
    J. N. Kuhn, W. Huang, C.-K. Tsung, Y. Zhang, G. A. Somorjai, Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica Journal of American Chemical Society 2008, 130, 14026–14027.CrossRefGoogle Scholar
  38. 38.
    M. A. Barakat, R. I., Al-Hutailah, M. H. Hashim, E. Qayyum, J.N. Kuhn, Titania-Supported Silver-based Bimetallic Nanoparticles as Photocatalysts, Environmental Science and Pollution Research (accepted, under publication).Google Scholar
  39. 39.
    M. Qamar, M. Muneer, D. Bahnemann, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management 2006., 80: 99–106.CrossRefGoogle Scholar
  40. 40.
    F. Akbal, A. N. Onar, Photocatalytic degradation of phenol. Environmental Monitoring and Assessment 2003, 83: 295–302.CrossRefGoogle Scholar
  41. 41.
    K. Naeem, O. Feng, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences 2009, 21, 527–533.CrossRefGoogle Scholar
  42. 42.
    S. F. Chen, Y. Z. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67(5), 1010–1017.CrossRefGoogle Scholar
  43. 43.
    M.A. Barakat, H. Schaeffer, G. Hayes, S.I. Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. J. Applied catalysis B: Environmental 2004, 57, 23–30.CrossRefGoogle Scholar
  44. 44.
    M. A. Barakat, J. M. Tseng, C. P. Huang, Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. J. Applied catalysis B: Environmental 2005, 59, 99–104.CrossRefGoogle Scholar
  45. 45.
    H. Wang, Z. Wu, Y. Liu, W. Wang, Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere 2008, 74, 773–778.CrossRefGoogle Scholar
  46. 46.
    Barakat, N.A.M.; Kanjwal, M.A.; Al-Deyab, S.S.; Chronakis, I.S.; Kim, H.Y. Influences of silver-doping on the crystal structure, morphology and photocatalytic activity of TiO2 nanofibers, Materials Sciences and Applications 2011, 2, 1188–1193.CrossRefGoogle Scholar
  47. 47.
    N.A.M. Barakat, K. D. Woo, M. A. Kanjwal, K. E. Choi, M. S. Khil, H.Y. Kim, Surface plasmon resonances, optical properties and electrical conductivity thermal hystersis of silver nanofibers produced by electrospin-ning Ttechnique. Langmuir 2008, 24,11982–11987.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2013

Authors and Affiliations

  • M. A. Barakat
    • 1
    • 2
  • R. I. Al-Hutailah
    • 1
  • E. Qayyum
    • 3
  • J. N. Kuhn
    • 3
  1. 1.Department of Environmental SciencesKing Abdulaziz UniversitySaudi Arabia
  2. 2.Central Metallurgical R & D InstituteHelwan, CairoEgypt
  3. 3.Department of Chemical & Biomedical Eng.University of South FloridaTampaUSA

Personalised recommendations