Advertisement

REWAS 2013 pp 155-166 | Cite as

Practical thermodynamic model for acidic sulfate solutions

  • Hannu Sippola
  • Petri Kobylin
  • Pekka A. Taskinen

Abstract

Practicable thermodynamic description of sulfuric acid — water system is essential when modeling of acidic sulfate solutions required in process optimization and waste management. Traditional Pitzer model is limited up to 6 mol/kg (35w%) sulfuric acid solutions. Local composition models such as electrolyte NRTL can deal H2SO4-H2O systems up to high concentrations but their use is practically limited to vapor-liquid equilibrium. Mole fraction based version of Pitzer equation is capable to describe H2SO4-H2O system up to 40 mol/kg (80w%) acid concentration at temperatures range from 328 K (55°C) down to 200 K but the number parameters is quite extensive for practical purposes. Recently developed NPL Pitzer model has proved to be capable to describe sulfuric acid -water system in temperature range 0–55 °C using only five parameters with simple temperature dependency of a+b/T. The capabilities of NPL Pitzer model is demonstrated here in wide temperature range up to 40 mol/kg (80w%) solutions with H2SO4-H2O and H2SO4-FeSO4-H2O systems.

Keywords

“Sulfuric acid iron sulfate thermodynamics” 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Müller, “Sulfuric Acid and Sulfur Trioxide,” Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000), 1–71.Google Scholar
  2. [2]
    K.S. Pitzer, R.N. Roy and L.F. Silvester, “Thermodynamics of Electrolytes 7. Sulfuric acid.”, J Am Chem Soc,99(1977),4930–4936.CrossRefGoogle Scholar
  3. [3]
    E.J. Reardon and R.D. Beckie, “Modeling chemical equilibria of acid mine-drainage: The FeSO4-H2SO4-H2O system”, Geochim Cosmochim Acta, 51(1987), 2355–2368.CrossRefGoogle Scholar
  4. [4]
    H. Sippola, “Solubility of Ferrous Sulphate in Sulphuric Acid — A Thermodynamic Model” (Licentiate thesis, Helsinki University of Technology, 1992), .Google Scholar
  5. [5]
    H.F. Holmes and R.E. Mesmer, “Isopiestic studies of H2SO4(aq) at elevated temperatures: Thermodynamic properties”, J Chem Thermodyn, 24(1992),317–328.CrossRefGoogle Scholar
  6. [6]
    S.L. Clegg, J.A. Rard and K.S. Pitzer, “Thermodynamic properties of 0–6 mol kg-1 Aqueous Sulfuric Acid from 273.15 to 328.15 K”, J Chem Soc Faraday Trans,90(1994),1875–1894.CrossRefGoogle Scholar
  7. [7]
    S.L. Clegg and P. Brimblecombe, “Application of Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0–40 mol kg-1 Aqueous Sulfuric Acid from < 200 to 328 K”, J Chem Eng Data, 40(1995), 43–64.CrossRefGoogle Scholar
  8. [8]
    D.A. Knopf, B.P. Luo, U.K. Krieger, et al, “Thermodynamic Dissociation Constant of the Bisulfate Ion from Raman and Ion Interaction Modeling Studies of Aqueous Sulfuric Acid at Low Temperatures”, J Phys. Chem A,107(2003),4322–4332.CrossRefGoogle Scholar
  9. [9]
    C. Christov and N. Moller, “Chemical equilibrium model of solution behavior in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature”, Geochim Cosmochim Acta, 68(2004),1309–1331.CrossRefGoogle Scholar
  10. [10]
    E. Friese and A. Ebel, “Temperature Dependent Thermodynamic Model of the System H+-NH4 +-Na+-SO4 2--NO3 --Cl--H2O”, J Phys Chem A,114(2010),11595–11631.CrossRefGoogle Scholar
  11. [11]
    C.E. Harvie and J.H. Weare, “The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-Cl-SO4-H2O System from Zero to High Concentrations at 25 °C”, Geochim Cosmochim Acta,44(1980),981–997.CrossRefGoogle Scholar
  12. [12]
    D.G. Archer, “Thermodynamic Properties of the NaCI + H2O System II. Thermodynamic Properties of NaCI(aq), NaCI•2H20(cr), and Phase Equilibria”, J Phys Chem Ref Data,21(1992),793–829.CrossRefGoogle Scholar
  13. [13]
    Y. Liu and U. Grén, “Simultaneous correlation of activity coefficients for 55 aqueous electrolytes using a model with ion specific parameters”, Chemical Engineering Science,46(1991),1815–1821.CrossRefGoogle Scholar
  14. [14]
    A. Bosen and H. Engels, “Description of the phase equilibrium of sulfuric acid with the NRTL equation and a solvation model in a wide concentration and temperature range”, Fluid Phase Equilib,43(1988),213–230.CrossRefGoogle Scholar
  15. [15]
    B. Messnaoui and T. Bounahmidi, “On the modeling of calcium sulfate solubility in aqueous solutions”, Fluid Phase Equilib,244(2006),117–127.CrossRefGoogle Scholar
  16. [16]
    G.M. Bollas, C.C. Chen and P.I. Barton, “Refined electrolyte-NRTL model: Activity coefficient expressions for application to multi-electrolyte systems”, AIChE J,54(2008),1608–1624.CrossRefGoogle Scholar
  17. [17]
    J. Simonin, S. Krebs and W. Kunz, “Inclusion of Ionic Hydration and Association in the MSA-NRTL Model for a Description of the Thermodynamic Properties of Aqueous Ionic Solutions:  Application to Solutions of Associating Acids”, Ind Eng Chem Res,45(2006),4345–4354.CrossRefGoogle Scholar
  18. [18]
    T. Vilarino, O. Bernard and J. Simonin, “Ionic Solutions in the Binding Mean Spherical Approximation. Thermodynamics of Associating Electrolytes up to Very High Concentrations”, J Phys Chem B,108(2004),5763–5770.CrossRefGoogle Scholar
  19. [19]
    F.L.P. Pessoa, C.E.P. Siqueira Campos and A.M.C. Uller, “Calculation of vapor–liquid equilibria in aqueous sulfuric acid solutions using the UNIQUAC equation in the whole concentration range”, Chemical Engineering Science,61(2006),5170–5175.CrossRefGoogle Scholar
  20. [20]
    H. Sippola, “Critical Evaluation of the 2nd Dissociation Constants for Aqueous Sulphuric Acid”, Poster presented at ICCT-2010, Tsukuba Science City, Japan, August 1–6,(2010),.Google Scholar
  21. [21]
    H. Sippola, “Critical Evaluation of the 2nd Dissociation Constants for Aqueous Sulphuric Acid”, Thermochim Acta,532(2012),65–77.CrossRefGoogle Scholar
  22. [22]
    J. Pihlasalo, H. Davies, P.A. Taskinen, Validation of a new Pitzer type model and database for aqueous solutions with Outotec HydroCopper TM process data. (Presented at CALPHAD, June 16–20 2008).Google Scholar
  23. [23]
    H. Sippola, “Thermodynamic modelling of concentrated sulfuric acid solutions”, Calphad,38(2012),168–176.CrossRefGoogle Scholar
  24. [24]
    K.S. Pitzer, “Thermodynamics of Electrolytes. I: Theoretical Basis and General Equations”, J Phys Chem,77(1973),268–277.CrossRefGoogle Scholar
  25. [25]
    C.E. Harvie, N. Møller and J.H. Weare, “The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C”, Geochim Cosmochim Acta,48(1984),723–751.CrossRefGoogle Scholar
  26. [26]
    K.S. Pitzer, “Semi-empirical Equations for Pure and Mixed Electrolytes,” Thermodynamics(Singapore, McGraw-Hill, 1995), 290–321.Google Scholar
  27. [27]
    K.S. Pitzer, “Ion Interaction Approach: Theory and Data Correlation,” Activity Coefficients in Electrolyte Solutionsed. Pitzer K.S. (Florida, USA, CRC Press, 2000), 75–154.Google Scholar
  28. [28]
    H.V. Sippola, Critical evaluation of the sulfuric acid — water system in wide concentration and temperature range(Presented at CALPHAD XL, May 22 – 27, 2011 2011).Google Scholar
  29. [29]
    P.M. Kobylin, H. Sippola and P.A. Taskinen, “Thermodynamic modelling of aqueous Fe(II) sulfate solutions”, Calphad,35(2011),499–511.CrossRefGoogle Scholar
  30. [30]
    F. Fraenckel, “Über die Existenzgebiete der Ferrosulfat-Hydrate”, Zeitschrift für anorganische Chemie,55(1907),223–232.CrossRefGoogle Scholar
  31. [31]
    A. Seidell, W.F. Linke, Solubilities of inorganic and metal organic compounds. Vol. 1 (New York: Van Nostrand, 1958), 1487 s.Google Scholar
  32. [32]
    W. Bullough, T.A. Canning and M.I. Strawbridge, “The solubility of ferrous sulphate in aqueous solutions of sulphuric acid”, Journal of Applied Chemistry,2(1952),703–707.CrossRefGoogle Scholar
  33. [33]
    G. Bruhn, J. Gerlach and F. Pawlek, “Untersuchungen über die Löslichkeiten von Salzen und Gasen in Wasser und wäßrigen Lösungen bei Temperaturen oberhalb 100°C”, Zeitschrift für anorganische und allgemeine Chemie,337(1965),68–79.CrossRefGoogle Scholar
  34. [34]
    F. Hasegawa, K. Tozawa and T. Nishimura, “Solubility of Ferrous Sulfate in Aqueous Solutions at High Temperatures”, Shigen-to-Soza,112(1996),879–884.CrossRefGoogle Scholar
  35. [35]
    T.G. Oykova and C. Balarew, “Thermodynamic study of magnesium sulfate-ferrosulfate water system at 25°C”, Comptes Rendus de l’Academie Bulgare des Sciences,27(1974),1211–1214.Google Scholar
  36. [36]
    T. Ojkova, “Die Veränderung der mittleren Ionenaktivitätskoeffizienten der Komponenten in Dreistoffsystemen mit Doppelsalzbildung”, Z. Phys. Chem (Leipzig),263(1982),1153–1161.Google Scholar
  37. [37]
    M. Diesnis, “Détermination des États hygrometriques critiques”, Ann. Chim. Appl.,7(1937),5–69.Google Scholar
  38. [38]
    J. Perreu, “Sur la calorimétrie des solutions aqueuses de borax, de sulfate ferreux, de nitrate cuivrique et de nitrate de magnesium”, Comp Rend,213(1941),286–289.Google Scholar
  39. [39]
    K.A. Kobe and E.J. Couch, “Enthalpy-Concentration Diagram for System Ferrous Sulfate Water”, Ind Eng Chem,46(1954),377–381.CrossRefGoogle Scholar
  40. [40]
    A.A. Malinin, S.I. Drakin and A.G. Ankudimov, “Study of equilibrium pressure of dehydration of some crystal hydrates of salts”, Russ. J. Phys. Chem.,53(1979),755.Google Scholar
  41. [41]
    I.-. Chou, R.R. Seal II and B.S. Hemingway, “Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa”, Am. Mineral.,87(2002),108–114.CrossRefGoogle Scholar
  42. [42]
    A. Belopol’skii and S. Shpunt, “System FeSO4–H2SO4–H2O at temperatures 50–90°”, Zh Prikl Khim,14(1941),716–733.Google Scholar
  43. [43]
    A.P. Belopol’skii and V.V. Urusov, “System FeSO4-H2SO4-H2O II. Solubilities and densities of solutions at temperatures from -20° to +25°”, Zh Prikl Khim,21(1948),781–793.Google Scholar
  44. [44]
    A.P. Belopol’skii, V.N. Kolycheva and S.Y. Shpunt, “System FeSO4-H2SO4-H2O III.The solubility of FeSO4.7H2O in aqueous solutions of sulfuric acid at temperatures from 10° to 50°”, Zh Prikl Khim,21(1948),794–801.Google Scholar
  45. [45]
    Y. Matsushima and A. Okuwaki, “The Second Dissociation Constant of Sulfuric Acid at Elevated Temperatures from Potentiometric Measurements”, Bull Chem Soc Jpn,61(1988),3344–3346.CrossRefGoogle Scholar
  46. [46]
    R.H. Davies, A.T. Dinsdale, J.A. Gisby, et al, “MTDATA — thermodynamic and phase equilibrium software from the national physical laboratory”, Calphad,26(2002),229–271.CrossRefGoogle Scholar
  47. [47]
    F.K. Cameron, “The Solubility of Ferrous Sulphate”, J Phys Chem,34(1929),692–710.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2013

Authors and Affiliations

  • Hannu Sippola
    • 1
    • 2
  • Petri Kobylin
    • 1
  • Pekka A. Taskinen
    • 1
  1. 1.Department of Materials Science and EngineeringAalto UniversityFinland
  2. 2.Permanent address FCG Design and EngineeringHelsinkiFinland

Personalised recommendations