3D Characterization of Recrystallization Boundaries

  • Yubin Zhang
  • Andrew Godfrey
  • Nicole MacDonald
  • Dorte Juul Jensen


A three-dimensional (3D) volume containing a recrystallizing grain and a deformed matrix in a partially recrystallized pure aluminum was characterized using the 3D electron backscattering diffraction technique. The 3D shape of a recrystallizing boundary, separating the recrystallizing grain and deformed matrix, was reconstructed. The result shows a very complex structure containing several large protrusions and retrusions. A correlation between the protrusions/retrusions and the deformed matrix in front of the boundary shows that the deformed microstructure has a very strong influence on the formation of protrusions/retrusions.


grain boundary recrystallization aluminum protrusion/retrusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Haessner, Recrystallization of metallic materials. (Dr. Riederer Verlag GmbH Stuttgart, 1978).Google Scholar
  2. 2.
    S. Schmidt et al., “Watching the growth of bulk grains during recrystallization of deformed metals, ” Science, 305(2004), 229–232.CrossRefGoogle Scholar
  3. 3.
    Y.B. Zhang et al., “Analysis of the growth of individual grains during recrystallization in pure nickel, ” Acta Mater. 2009;57: 2631–2639.CrossRefGoogle Scholar
  4. 4.
    S. Van Boxel et al., “Monitoring grain boundary migration during recrystallisation using topotomography,” Proceeding of the 31st Risø International Symposium (2010), 449–456.Google Scholar
  5. 5.
    Y.B. Zhang, A. Godfrey, D. Juul Jensen, “Local boundary migration during recrystallization in pure aluminum, ” Scripta Mater. 64(2011), 331–334.CrossRefGoogle Scholar
  6. 6.
    Y.B. Zhang, A. Godfrey, D. Juul Jensen, “In-situ observations of migration of recrystallization boundaries in pure aluminium,” Proceeding 31st Risø International Symposium. (2010), 497–503.Google Scholar
  7. 7.
    N. Moelans et al., to be submitted for publication.Google Scholar
  8. 8.
    P.A. Beck, P.R. Sperry, H. Hu. “The orientation dependence of the rate of grain boundary migration,” J Appl Phys 21(1950),420–425.CrossRefGoogle Scholar
  9. 9.
    Y.B. Zhang, A. Godfrey, D. Juul Jensen, “Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries,” Computers, Materials & Continua 14(2009), 197–207.Google Scholar
  10. 10.
    M.A. Martorano, M.A. Fortes, A.F. Padilha, “The growth of protrusions at the boundary of a recrystallized grain,” Acta Mater. 54(2006), 2769–2776.CrossRefGoogle Scholar
  11. 11.
    M.A. Martorano et al., “Observations of grain boundary protrusions in static recrystallization of high-purity bcc metals,” Scripta Mater 56(2007), 903–905.CrossRefGoogle Scholar
  12. 12.
    R.B. Godiksen et al., “Simulations of boundary migration during recrystallization using molecular dynamics,” Acta Mater. 55(2007), 6383–6391.CrossRefGoogle Scholar
  13. 13.
    R.B. Godiksen, S. Schmidt, D. Juul Jensen, “Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure,” Modeling Simul Mater Sci. Eng. 16(2008), 065002.CrossRefGoogle Scholar
  14. 14.
    S. Zaefferer, S.I. Wright, D. Raabe. “Three-Dimensional Orientation Microscopy in a Focused Ion Beam-Scanning Electron Microscope: A New Dimension of Microstructure Characterization,” Metal. Mater. Trans. 39A(2007), 374–389.CrossRefGoogle Scholar
  15. 15.
    M.D. Uchic et al., “Three-Dimensional Microstructural characterization Using Focused Ion Beam Tomography,” MRS Bulletin. 32(2007), 408–416.CrossRefGoogle Scholar
  16. 16.
    X. Huang, G. Winther, “Dislocation structures. Part I. Grain orientation dependence,” Phil. Mag., 87(2007), 5189–5214.Google Scholar
  17. 17.
    F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed. (Pergamon Press, Oxford 2004).Google Scholar
  18. 18.
    G. Winther, X. Huang, “Dislocation structures. Part II. Slip system dependence,” Phil. Mag. 87(2007), 5215–5235.CrossRefGoogle Scholar
  19. 19.
    D. Juul Jensen, N. Hansen, “Flow stress anisotropy in aluminium,” Acta Metall. Mater. 38(1990),1369–1380.CrossRefGoogle Scholar
  20. 20.
    D. Juul Jensen, D.J. Rowenhorst, S. Schmidt, “Misorientation Aspects of Growth During Recrystallization,” Mater. Sci. Forum. 558–559(2007), 85–92.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • Yubin Zhang
    • 1
  • Andrew Godfrey
    • 2
  • Nicole MacDonald
    • 3
  • Dorte Juul Jensen
    • 1
  1. 1.Danish-Chinese Center for Nanometals, Materials Science and Characterization Section, Institute of Wind EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Laboratory of Advanced Materials, Department of Materials Science and EngineeringTsinghua UniversityBeijingP.R. China
  3. 3.Center for Electron NanoscopyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations