Ultra Fast Tomography: New Developments for 4D Studies in Material Science

  • Pierre Lhuissier
  • Mario Scheel
  • Marco Di Michiel
  • Elodie Boller
  • Jerome Adrien
  • Eric Maire
  • Luc Salvo
  • Jean-Jacques Blandin
  • Michel Suery
Conference paper

Abstract

X-ray tomography has become a widely used 3D characterization technique in materials science using either laboratory tomographs or large X-ray facilities. The two main improvements in the last decade are the decrease of the spatial resolution down to tens of nanometers and also the decrease in acquisition time of a complete scan down to 1 second with 2 µm spatial resolution. The aim of this presentation is to focus on the second point. We will present the technical problems arising due to ultra fast acquisition (development of specific sample environment) and its application in material science. We will show, that thanks to ultra fast tomography, it is now possible to investigate material science problems in 4D (crack propagation in metals and high temperature deformation).

Keywords

In situ Continuous tomography Damage evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, A. Bareggi. Acta Mater., 59 (2011): 7564–7573.CrossRefGoogle Scholar
  2. [2]
    O. Caty, E. Maire, S. Youssef, R. Bouchet. Acta Mater., 56 (2008): 5524–5534.CrossRefGoogle Scholar
  3. [3]
    A. Fallet, P. Lhuissier, L. Salvo, Y. Brechet. Adv. Eng. Mater., 10 (2008), 858–862.CrossRefGoogle Scholar
  4. [4]
    A.E. Scot, M. Mavrogordato, P. Wright, I. Sinclair, S.M. Spearing. Compos. Sci. Technol., 71 (2011): 1471–1477.CrossRefGoogle Scholar
  5. [5]
    W. Ludwig, A. King, P. Reischig, M. Herbig, E.M. Lauridsen, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, P., S. Rolland Du Roscoat. Mater. Sci. Eng. A, 524 (2009): 69–76.CrossRefGoogle Scholar
  6. [6]
    O. Pompe, M. Rettenmayr. J Cryst Growth, 192 (1998): 300–306.CrossRefGoogle Scholar
  7. [7]
    L. Salvo, M. DiMichiel, M. Scheel, P. Lhuissier, B. Mireux, M. Suéry. Materials Science Forum, 706 (2012): 1713–1718.CrossRefGoogle Scholar
  8. [8]
    M. Suéry, J. Adrien, C. Landron et al. Int. J. Mater. Res., 101 (2010): 1080–1088.CrossRefGoogle Scholar
  9. [9]
    E. Maire, V. Carmona, J. Courbon, W. Ludwig. Acta mater., 55 (2007): 6806–6815.CrossRefGoogle Scholar
  10. [10]
    J.-Y. Buffiere, E. Maire, J. Adrien, J.-P. Masse, E. Boiler. Exp. Mech., 50 (2010): 289–305.CrossRefGoogle Scholar
  11. [11]
    P. Lhuissier, A. Villanueva Fernandez, L. Salvo, J.J. Blandin. Materials Science Forum, 706 (2012): 1128–1133.CrossRefGoogle Scholar
  12. [12]
    K.J. Batenburg, J. Math. Imaging Vis. 30 (2008): 231–248.CrossRefGoogle Scholar
  13. [13]
    N. Gac, A. Vabre, A. Mohammad Djafari, A. Rabanal, F. Buyens. The First International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, United States (2010).Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • Pierre Lhuissier
    • 1
  • Mario Scheel
    • 2
  • Marco Di Michiel
    • 2
  • Elodie Boller
    • 2
  • Jerome Adrien
    • 3
  • Eric Maire
    • 3
  • Luc Salvo
    • 1
  • Jean-Jacques Blandin
    • 1
  • Michel Suery
    • 1
  1. 1.SIMaP - Grenoble UniversitySaint Martin d’HèresFrance
  2. 2.ESRFGrenoble Cedex 9France
  3. 3.MATEIS - Lyon UniversityVilleurbanneFrance

Personalised recommendations