Optimizing Stochastic Process for Efficient Microstructure Reconstruction

  • Seun Ryu
  • Dongsheng Li
Conference paper

Abstract

To improve the efficiency in microstructure reconstruction is critical to build a high resolution statistical stable representative volume element practically. Using correlation function to reconstruct image using simulated annealing is revisited in this study. Different cooling schedules in simulated annealing were utilized and compared. Dramatic increase of computation efficiency has been achieved by optimizing cooling schedule, making it feasible for future computation intensive study on upscaling prediction.

Keywords

correlation microstructure reconstruction simulated annealing cooling schedule stochastic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.S. Choi, Soulami, A., Li, D., Sun, X., Khaleel, M. A., Xu, L. and Barlat, F., submitted for SAE 2012 World Congress, 12M-0156 (2012).Google Scholar
  2. [2]
    C. Yeong, S. Torquato, Physical Review E, 57 (1998) 495.CrossRefGoogle Scholar
  3. [3]
    Y. Jiao, F. Stillinger, S. Torquato, Physical Review E, 77 (2008) 031135.CrossRefGoogle Scholar
  4. [4]
    D. Cule, S. Torquato, Journal of applied physics, 86 (1999) 3428.CrossRefGoogle Scholar
  5. [5]
    C. Manwart, R. Hilfer, Physical Review E, 59 (1999) 5596.CrossRefGoogle Scholar
  6. [6]
    M.G. Rozman, M. Utz, Physical Review E, 63 (2001) 066701.CrossRefGoogle Scholar
  7. [7]
    Y. Mao, A. Gokhale, J. Harris, Computational materials science, 37 (2006) 543–556.CrossRefGoogle Scholar
  8. [8]
    D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, N. Hampson, Materials Science and Engineering: A, 494 (2008) 68–72.CrossRefGoogle Scholar
  9. [9]
    D.T. Fullwood, S.R. Niezgoda, S.R. Kalidindi, Acta Materialia, 56 (2008) 942–948.CrossRefGoogle Scholar
  10. [10]
    H. Garmestani, M. Baniassadi, D. Li, M. Fathi, International Journal of Theoretical and Applied Multiscale Mechanics, 1 (2009) 134–149.CrossRefGoogle Scholar
  11. [11]
    M. Baniassadi, H. Garmestani, D. Li, S. Ahzi, M. Khaleel, X. Sun, Acta Materialia, 59 (2011) 30–43.CrossRefGoogle Scholar
  12. [12]
    D. Li, M. Baniassadi, H. Garmestani, S. Ahzi, M. Reda Taha, D. Ruch, Journal of Computational and Theoretical Nanoscience, 7 (2010) 1462–1468.CrossRefGoogle Scholar
  13. [13]
    R. Piasecki, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 467 (2011) 806.CrossRefGoogle Scholar
  14. [14]
    N.C. Kumar, K. Matouš, P.H. Geubelle, Computational materials science, 42 (2008) 352–367.CrossRefGoogle Scholar
  15. [15]
    S. Torquato, H. Haslach Jr, Applied Mechanics Reviews, 55 (2002) B62.CrossRefGoogle Scholar
  16. [16]
    D. Li, M. Khaleel, X. Sun, H. Garmestani, Computational materials science, 48 (2010) 133–139.CrossRefGoogle Scholar
  17. [17]
    S. Torquato, J. Beasley, Y. Chiew, The Journal of chemical physics, 88 (1988) 6540.CrossRefGoogle Scholar
  18. [18]
    P. Čapek, V. Hejtmánek, L. Brabec, A. Zikánová, M. Kočiřík, Transport in porous media, 76 (2009) 179–198.CrossRefGoogle Scholar
  19. [19]
    Y. Jiao, F. Stillinger, S. Torquato, Proceedings of the National Academy of Sciences, 106 (2009) 17634–17639.CrossRefGoogle Scholar
  20. [20]
    C. Manwart, S. Torquato, R. Hilfer, Physical Review E, 62 (2000) 893.CrossRefGoogle Scholar
  21. [21]
    V. Černý, Journal of optimization theory and applications, 45 (1985) 41–51.CrossRefGoogle Scholar
  22. [22]
    S. Kirkpatrick, CD. Gelatt, M.P. Vecchi, science, 220 (1983) 671.Google Scholar
  23. [23]
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, The Journal of chemical physics, 21 (1953) 1087.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • Seun Ryu
    • 1
  • Dongsheng Li
    • 1
  1. 1.Fundamental and Computational Sciences DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations