Advertisement

A Toolbox for Geometric Grain Boundary Characterization

  • Krzysztof Glowinski
  • Adam Morawiec
Conference paper

Abstract

Properties of polycrystalline materials are affected by grain boundary networks. The most basic aspect of boundary analysis is boundary geometry. This paper describes a package of computer programs for geometric boundary characterization based on macroscopic boundary parameters. The program allows for determination whether a boundary can be classified as near-tilt, -twist, -symmetric et cetera. Since calculations on experimental, i.e., error affected data are assumed, the program also provides distances to the nearest geometrically characteristic boundaries. The software has a number of other functions helpful in grain boundary analysis. One of them is the determination of planes of all characteristic boundaries for a given misorientation. The resulting diagrams of geometrically characteristic boundaries can be linked to experimentally determined grain boundary distributions. In computations, all symmetrically equivalent representations of boundaries are taken into account. Cubic and hexagonal holohedral crystal symmetries are allowed.

Keywords

Grain boundary interface geometric characterization macroscopic boundary parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Viewpoint set 41: 3D Characterization and Analysis of Materials, Scripta Mater. 55 (2006).Google Scholar
  2. [2]
    C. Goux, Can. Metall. Quart. 13, 9–31 (1974).CrossRefGoogle Scholar
  3. [3]
    G.S. Rohrer, J. Li, S. Lee, A. D. Rollett, M. Groeber, M.D. Uchic, Mater. Sci. Technol. 26, 661–669 (2010).CrossRefGoogle Scholar
  4. [4]
    G.S. Rohrer, JOM 59, 38–42 (2007).CrossRefGoogle Scholar
  5. [5]
  6. [6]
    F. Bachmann, R. Hielscher, H. Schaeben, Ultramicroscopy 111, 1720–1733 (2011).CrossRefGoogle Scholar
  7. [7]
    R.H. Moore, G.S. Rohrer, S. Saigal, Eng. Comput. 25, 221–235 (2009).CrossRefGoogle Scholar
  8. [8]
    H. Liu, J. Liu, J. Appl. Cryst. 45, 130–134 (2012).CrossRefGoogle Scholar
  9. [9]
    A. Morawiec, J. Appl. Cryst. 42, 783–792 (2009).CrossRefGoogle Scholar
  10. [10]
    A. Morawiec, Z. Kristallogr. 227, 199–206 (2012).CrossRefGoogle Scholar
  11. [11]
    M. A. Fortes, Acta Cryst. A 29, 68–70 (1973).CrossRefGoogle Scholar
  12. [12]
    A. Morawiec, Scripta Mater. 61, 438–440 (2009).CrossRefGoogle Scholar
  13. [13]
    A. Morawiec, J. Appl. Cryst. 44, 1152–1156 (2011).CrossRefGoogle Scholar
  14. [14]
    J.W. Cahn, J.E. Taylor, J. Mater. Sci. 41, 7669–7674 (2006).CrossRefGoogle Scholar
  15. [15]
    D.L. Olmsted, Acta Mater. 57, 2793–2799 (2009).CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • Krzysztof Glowinski
    • 1
  • Adam Morawiec
    • 1
  1. 1.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakowPoland

Personalised recommendations