Advertisement

Perspectives on Materials Science in 3D

  • D. Juul Jensen
Conference paper

Abstract

Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling are discussed.

Keywords

3D techniques 3DXRD recrystallization challenges for 3D science success of 3D science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Spanos, D.J. Rowenhorst, S. Chang and G.B. Olsen, “3D Characterization of Microstructures in Metallic Systems by Serial Sectioning”. Proc. 31st Risø International Symposium on Materials Science. Eds N. Hansen et al., (2010), 159–170.Google Scholar
  2. 2.
    J.S. Barnard, J. Sharp, J.R. Tong and P.A. Midgley, “High-Resolution Three-Dimensional Imaging of Dislocations”, Science, 313 (2006), 319–319.CrossRefGoogle Scholar
  3. 3.
    J.S. Barnard, J. Sharp, J.R. Tong and P.A. Midgley, “Three-Dimensional Analysis of Dislocation Networks in GaN using Weak-Beam Dark-Field Electron Tomography”, Philosophical Magazine, 86 (2006), 4901–4922.CrossRefGoogle Scholar
  4. 4.
    H.H. Liu, S. Schmidt, H.F. Poulsen, A. Godfrey, Z.Q. Liu, J. Sharon and X. Huang, “Three-Dimensional Orientation Mapping in the Transmission Electron Microscope”, Science, 332 (2011), 833–834.CrossRefGoogle Scholar
  5. 5.
    X.D. Zhang, A. Godfrey, G. Winther, N. Hansen and X. Huang, “In-Situ TEM Compression of Submicron-Sized Single Crystal Copper Pillars”. Proc. 31st Risø International Symposium on Materials Science. Eds. N. Hansen et al., (2010), 489–496.Google Scholar
  6. 6.
    Y. Zhang, A. Godfrey and D. Juul Jensen, “Local Boundary Migration during Recrystallization in Pure Aluminium”, Scripta Mater., 64 (2011), 331–334.CrossRefGoogle Scholar
  7. 7.
    E. Anselmino, “Microstructural effects on grain boundary motion in AlMn alloys” (PhD Thesis, Delft Univ. Techn), (2007).Google Scholar
  8. 8.
    T.J. Sabin, S. Schmidt, H.O. Sørensen, G. Winther, H.F. Poulsen, L. Margulies, C. Gundlach, and D. Juul Jensen, „Direct Non-Destructive Observation of Bulk Nucleation in 30 % Deformed Alluminium, Scripta Mater., 61 (2009), 875–878.CrossRefGoogle Scholar
  9. 9.
    M.A. Mangan, P.D. Lauren and G.J. Shiflet, “Three-Dimensional Reconstruction of Widmanstatten Plates in Fe — 12.3 Mn — 0.8 C”, Journal of Microscopy, 188 (1997), 36–41.CrossRefGoogle Scholar
  10. 10.
    R.A. Vandermeer and P. Gordon, “Edge-Nucleated, Growth Controlled Recrystallization in Aluminium, Trans Metall. Soc. AIME, 215 (1959), 577–588.Google Scholar
  11. 11.
    D.K. Bowen “Application of Synchrotron X-ray Methods for the Characterization of Deformed and Recrystallized Microstructures”, Proc. 5th Risø International Symposium on Materials Science. Eds. N. Hessel Andersen et al., (1984), 1–17.Google Scholar
  12. 12.
    A.B.C. Dadson and R.D. Doherty, “Transmission Pseudo — Kossel (TK) Studies of the Structure of Hot-Deformed (Dynamically Recovered) Polycrystalline Aluminium”, Acta Metall. Mater., 40 (1992), 345–352.CrossRefGoogle Scholar
  13. 13.
    D. Juul Jensen and J.K. Kjems, “Apparatus for Dynamical Texture Measurements by Neutron Diffraction Using a Position Sensitive Detector”. Textures and Microstructures, 5 (1983), 239–251.CrossRefGoogle Scholar
  14. 14.
    T. Lorentzen and J.B. Ibsø “Neutron-Diffraction Measurements of Residual Strains in Offshore Welds”, Mat. Sci. Eng. A, 197 (1995), 209–214.CrossRefGoogle Scholar
  15. 15.
    J.E. Spowart, “Automatic Serial Sectioning for 3D Analysis of Microstructures”, Scripta Mater., 55 (2006), 5–10.CrossRefGoogle Scholar
  16. 16.
    D.J. Rowenhorst, A.C. Lewis and G. Spanos, “Three-Dimensional Analysis of Grain Topology and Interface Curvature in a Beta-Titanium Alloy”, Acta Materialia 58 (2010), 5511–5519.CrossRefGoogle Scholar
  17. 17.
    Z. Sükösd, K. Hanneson, G.L. Wu and D. Juul Jensen, “3D Spatial Distribution of Nuclei in 90 % Cold Rolled Aluminium, Mat. Sci. Forum, 558–559, (2007), 345–350.CrossRefGoogle Scholar
  18. 18.
    Y.H. Zhang, D. Juul Jensen, Y. Zhang, F.X. Lin, Z.Q. Zhang and Q. Liu, “3D Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy”, Submitted for publication. Google Scholar
  19. 19.
    M.D. Uchic, M.A. Groeber, D.M. Dimiduh, J.P. Simmonds, “3D Microstructioral Characterization of Nickel Superalloys via Serial-Sectioning using Dual Beam FIB-SEM”, Scripta Mater., 55 (2006), 23–28.CrossRefGoogle Scholar
  20. 20.
    S. Zaefferer, S.I. Wright and D. Raabe, “Three-Dimensional Orientation Microscopy of a Focused Ion Beam-Scanning Electron Microscope: A New Dimension of Microstructure Characterization”, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 39A (2) (2008), 374–389.CrossRefGoogle Scholar
  21. 21.
    M.L.P. Echlin, A. Mottura, C. Torbet and T.M. Pollock, “A New TriBeam System for Three-Dimensional Multimodal Materials Analysis”, The Review of Scientific Instruments, 83 (2) (2012), 023701.Google Scholar
  22. 22.
    H.F. Poulsen and D. Juul Jensen, “Synchrotron Radiation Diffraction: A Novel Tool for Recrystallization Studies in Bulk µm Sized Local areas”. Proc. 16th Risø International Symposium on Materials Science: Microstructural and Crystallographic Aspects of Recrystallization. Edited by N. Hansen et al., (1995), 503–508.Google Scholar
  23. 23.
    H.F. Poulsen, “ThreeDimensional X-ray Diffraction Microscopy” (Springer Berlin, 2004).CrossRefGoogle Scholar
  24. 24.
    D. Juul Jensen, A. Kvick, E.M. Lauridsen, U. Lienert, L. Margulies, S.F. Nielsen and H.F. Poulsen. Proc. Mat. Res. Soc. Symp., 590 (2000), 227–240.CrossRefGoogle Scholar
  25. 25.
    G. Ice, “Letting the Grains Show Their Strains. Materials World, May 2000, 20–21.Google Scholar
  26. 26.
    B.C. Larson, W. Yang, G.E. Ice, J.D. Budai and J.Z. Tischler, “Three Dimensional X-ray Structural Microscopy of Submicrometre Resolution”, Nature, 415 (2002), 887–890.CrossRefGoogle Scholar
  27. 27.
    G.E. Ice, B.C. Larson, W. Yang, J.D. Budai, J.Z. Tischler, J.W.L. Pang, R.I. Barabash and W. Liu, “Polychromatic X-ray Microdiffraction Studies of Mesoscale Structure and Dynamics”, J. Synchrotron Rad., 12 (2005), 155–162.CrossRefGoogle Scholar
  28. 28.
    H.J. Bunge, L. Wcislak, H. Klein, U. Garbe and J.R. Schneider, “Texture and Microstructure Imaging in Six-Dimensions with High-Energy Synchrotron Radiation”, J. Appl. Cryst., 36 (2003), 1240–1255.CrossRefGoogle Scholar
  29. 29.
    T. Wroblewski, O. Clauss, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes and E. Woldt, “A new Diffractometer for Materials Science and Imaging at HASYLAB Beamline G3”, Nucl. Instr. Meth. A, 428 (1999), 570–582.CrossRefGoogle Scholar
  30. 30.
    H.F. Poulsen, S. Garbe, T. Lorentzen, D. Juul Jensen, F.W. Poulsen, N.H. Andersen, T. Frello, R. Feidenhans’l and H. Graafsma, “Applications of High-Energy Synchrotron Radiation for Structural Studies of Polycrystalline Materials”, J. Synchrotron Rad., 4 (1997), 147–154.CrossRefGoogle Scholar
  31. 31.
    B. Duggan, “The Problem of Lost Evidence” (Term Discussed at the ICOTOM 11 Conference held in Xian, China, 1996).Google Scholar
  32. 32.
    H. Weiland, T.N. Rouns and J. Liu, “The Role of Particle Stimulated Nucleation during Recrystallization of an Aluminium — Manganese Alloy”, Z. Metall kde, 85 (1994), 592–597.Google Scholar
  33. 33.
    S. Storm and D. Juul Jensen, “Effects of Clustered Nucleation on Recrystallization”, Scripta Mater., 60 (2009), 477,480.CrossRefGoogle Scholar
  34. 34.
    H. Paul, J.H. Driver and Z. Jasienski, “Shear Banding and Recrystallization Nucleation in a Cu-2% Al Alloy Single Crystal”, Acta Materialia, 50 (2002), 815–830.CrossRefGoogle Scholar
  35. 35.
    S.R. Skjervold and N. Ryum, “Orientation Relationships in a Partially Recrystallized Polycrystalline AlSi-Alloy”, Acta Materialia, 44 (1996), 3407–3419.CrossRefGoogle Scholar
  36. 36.
    G.L. Wu and D. Juul Jensen, “Orientations of Recrystallization Nuclei Developed in Columnar-Grained Ni at Triple Junctions and a High-Angle Grain Boundary”, Acta Mater., 55 (2007), 4955–4964.CrossRefGoogle Scholar
  37. 37.
    A.W. Larsen, H.F. Poulsen, L. Margulies, C. Gundlach, Q.F. Xing, X. Huang and D. Juul Jensen, “Nucleation of Recrystallization Observed in-situ in the Bulk of Deformed Metals”, Scripta Mater., 53 (2005), 553–557.CrossRefGoogle Scholar
  38. 38.
    S.S. West, S. Schmidt, H.O. Sorensen, G. Winther, H.F. Poulsen, L. Margulies, C. Gundlach and D. Juul Jensen, „Direct Non-Destructive Observation of Bulk Nucleation in 30% Deformed Aluminum“, Scripta Mater., 61 (9) (2009), 875–878.CrossRefGoogle Scholar
  39. 39.
    G. Gottstein and L.S. Shvindlerman, “On the True Dependence of Grain Boundary Migration Rate on Drive Force”, Scripta Met. Mat., 27 (1992), 1521–1526.CrossRefGoogle Scholar
  40. 40.
    R. Viswanathan and G.L. Bauer, “Kinetics of Grain Boundary Migration in Copper Bicrystals with (001) Rotation Axes”, Acta Metall., 21 (1973), 1099–1109.CrossRefGoogle Scholar
  41. 41.
    R.A. Vandermeer, “Dependence of Grain Boundary Migration Rates on Driving Force”, Trans AIME, 233 (1965), 265–267.Google Scholar
  42. 42.
    R.A. Vandermeer, D. Juul Jensen and E. Woldt, “Grain Boundary Mobility during Recrystallization of Copper”, Met. Mat. Trans, 28A (1997), 749–754.CrossRefGoogle Scholar
  43. 43.
    B.B. Rath and H. Hu, “Effect of Driving Force on the Migration of High-Angle Tilt Grain Boundaries in Aluminium Bicrystals, Trans TMS AIME, 245 (1969), 1577–1585.Google Scholar
  44. 44.
    Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu and D. Juul Jensen, “Analysis of the Growth of Individual Grains during Recrystallization in Pure Nickel”, Acta Mater., 57 (2009), 2631–2639.CrossRefGoogle Scholar
  45. 45.
    S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang and D. Juul Jensen, “Watching the Growth of Bulk Grains during Recrystallization of Deformed Metals”, Science, 305 (2004), 229–232.CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, G. Godfrey, N. MacDonald and D. Juul Jensen, “3D Characterization of Recrystallization Boundaries” (in these proceedings).Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • D. Juul Jensen
    • 1
  1. 1.Materials Science and Characterization Section, Department of Wind EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations