Iteratively-Supported Formulas and Strongly Supported Models for Kleene Answer Set Programs

(Extended Abstract)
  • Patrick Doherty
  • Jonas Kvarnström
  • Andrzej SzałasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)


In this extended abstract, we discuss the use of iteratively-supported formulas (ISFs) as a basis for computing strongly-supported models for Kleene Answer Set Programs (ASP\(^{K}\)). ASP\(^{K}\) programs have a syntax identical to classical ASP programs. The semantics of ASP\(^{K}\) programs is based on the use of Kleene three-valued logic and strongly-supported models. For normal ASP\(^{K}\) programs, their strongly supported models are identical to classical answer sets using stable model semantics. For disjunctive ASP\(^{K}\) programs, the semantics weakens the minimality assumption resulting in a classical interpretation for disjunction. We use ISFs to characterize strongly-supported models and show that they are polynomially bounded.



This work is partially supported by the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT network organization for Information and Communication Technology, the Swedish Foundation for Strategic Research (CUAS Project, SymbiKCloud Project), the EU FP7 project SHERPA (grant agreement 600958), and Vinnova NFFP6 Project 2013-01206.


  1. 1.
    Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl. Data Eng. 5(2), 282–292 (1993)CrossRefGoogle Scholar
  2. 2.
    Doherty, P., Szałas, A.: Stability, supportedness, minimality and kleene answer set programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Representation. LNCS, vol. 9060, pp. 125–140. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 64–73. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents -The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  6. 6.
    Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the IJCAI-03, pp. 853–858. Morgan Kaufmann (2003)Google Scholar
  12. 12.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Brewka, G., T., E., McIlraith, S. (eds.) Proceedings of the KR 2012. AAAI Press (2012)Google Scholar
  14. 14.
    Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiability. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 221–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7(3), 355–375 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Patrick Doherty
    • 1
  • Jonas Kvarnström
    • 1
  • Andrzej Szałas
    • 1
    • 2
    Email author
  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations