Computing a Tree Having a Small Vertex Cover

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10043)

Abstract

In this paper, we consider a new Steiner tree problem. This problem defines the weight of a Steiner tree as the minimum weight of vertex covers in the tree, and seeks a minimum-weight Steiner tree in a given vertex-weighted undirected graph. Since it is included by the Steiner tree activation problem, the problem admits an \(O(\log n)\)-approximation algorithm in general graphs with n vertices. This approximation factor is tight because it is known to be NP-hard to achieve an \(o(\log n)\)-approximation for the problem with general graphs. In this paper, we present constant-factor approximation algorithms for the problem with unit disk graphs and with graphs excluding a fixed minor.

References

  1. 1.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60, 6 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic steiner tree relaxations. In: STOC, pp. 1161–1176 (2012)Google Scholar
  3. 3.
    Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. In: IPCO, pp. 323–332 (1993)Google Scholar
  4. 4.
    Perlman, R.J.: An algorithm for distributed computation of a spanningtree in an extended LAN. In: SIGCOMM, pp. 44–53 (1985)Google Scholar
  5. 5.
    Panigrahi, D.: Survivable network design problems in wireless networks. In: SODA, pp. 1014–1027 (2011)Google Scholar
  6. 6.
    Angel, E., Bampis, E., Chau, V., Kononov, A.: Min-power covering problems. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 367–377. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_32 CrossRefGoogle Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted Steiner tree and group Steiner tree in planar graphs. ACM Trans. Algorithms 10, 13 (2014)MathSciNetMATHGoogle Scholar
  8. 8.
    Zou, F., Li, X., Gao, S., Wu, W.: Node-weighted Steiner tree approximation in unit disk graphs. J. Comb. Opt. 18, 342–349 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zou, F., Li, X., Kim, D., Wu, W.: Two constant approximation algorithms for node-weighted steiner tree in unit disk graphs. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 278–285. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85097-7_26 CrossRefGoogle Scholar
  10. 10.
    Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006). doi:10.1007/11830924_3 CrossRefGoogle Scholar
  11. 11.
    Huang, L., Li, J., Shi, Q.: Approximation algorithms for the connected sensor cover problem. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 183–196. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21398-9_15 CrossRefGoogle Scholar
  12. 12.
    Zou, F., Wang, Y., Xu, X., Li, X., Du, H., Wan, P., Wu, W.: New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theor. Comp. Sci. 412, 198–208 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. J. Comp. Sys. Sci. 76, 709–726 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40, 245–269 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42, 202–208 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4, 307–316 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Thomason, A.: The extremal function for complete minors. J. Comb. Theory Ser. B 81, 318–338 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fonseca, G.D., Sá, V.G.P., Figueiredo, C.M.H.: Linear-time approximation algorithms for unit disk graphs. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 132–143. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18263-6_12 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.JST, ERATO, Kawarabayashi Large Graph ProjectTokyoJapan
  3. 3.Department of Mathematical and Systems EngineeringShizuoka UniversityShizuokaJapan

Personalised recommendations