Advertisement

Findings About Selecting Body Parts to Analyze Human Activities Through Skeletal Tracking Joint Oriented Devices

  • Carlos Gutiérrez López de la Franca
  • Ramón Hervás
  • Esperanza Johnson
  • José Bravo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10069)

Abstract

Analyzing activities (either static postures or movements) made by a user is a complex process that can be done through a wide range of approaches. One part of these existing approaches support doing the recognition focusing their analysis on specific body parts. In fact, in previous publications a method was introduced for activity recognition (Body-Angles Algorithm) capable of analysing only using a single sample of those activitites and allowing the selection for each activity which are the relevant joints. But being able to analyse the body of the user selecting only a subset of the same, has both advantages and disadvantages. Therefore throughout this article we will expose those disadvantages, the applied solution to mitigate them and the results of an evaluation destined to clear which body parts make it easier to obtain high accuracy rates in recognition. Through this work we aim to give the scientific community lessons learned about the usage of different body areas in the analysis of activity recognition.

Keywords

Activity recognition Computer vision Body-Angles Algorithm Ubiquitous computing Ambient intelligence Kinect 

Notes

Acknowledgments

This work was conducted in the context of UBIHEALTH project under International Research Staff Exchange Schema (MC-IRSES 316337) and the coordinated project grant TIN2013-47152-C3-1-R (FRASE), funded by the Spanish Ministerio de Ciencia e Innovación.

References

  1. 1.
    Alexiadis, D.S., Kelly, P., Daras, P., O’Connor, N.E., Boubekeur, T., Moussa, M.B.: Evaluating a dancer’s performance using kinect-based skeleton tracking. In: Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, Arizona, USA, pp. 659–662. ACM (2011)Google Scholar
  2. 2.
    Banos, O., Toth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects of sensor displacement in wearable activity recognition. Sensors 14(6), 9995–10023 (2014)CrossRefGoogle Scholar
  3. 3.
    Bansal, S., Khandelwal, S., Gupta, S., Goyal, D.: Kitchen activity recognition based on scene context. In: International Conference on Image Processing (ICIP), Melbourne, Australia, pp. 3461–3465. IEEE (2013)Google Scholar
  4. 4.
    Biswas, K.K., Basu, S.K.: Gesture recognition using microsoft kinect®. In: Automation, Robotics and Applications (ICARA) 5th International Conference, Wellington, New Zealand, pp. 100–103. IEEE (2011)Google Scholar
  5. 5.
    Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., Mihailidis, A.: A planning system based on Markov decision processes to guide people with dementia through activities of daily living. IEEE Trans. Inf Technol. Biomed. 10(2), 323–333 (2006)CrossRefGoogle Scholar
  6. 6.
    Brush, A., Krumm, J., Scott, J.: Activity recognition research: the good, the bad, and the future. In: Pervasive Workshop How to do Good Research in Activity Recognition. Helsinki, Finland (2010)Google Scholar
  7. 7.
    Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., Finlay, D.: Optimal placement of accelerometers for the detection of everyday activities. Sensors 13(7), 9183–9200 (2013)CrossRefGoogle Scholar
  8. 8.
    Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities. In: International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 407–414. IEEE (2011)Google Scholar
  9. 9.
    Fontecha, J., Navarro, F.J., Hervás, R., Bravo, J.: Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Pers. ubiquitous Comput. 17(6), 1073–1083 (2013)CrossRefGoogle Scholar
  10. 10.
    Fu, J., Liu, C., Hsu, Y.P., Fu, L.C.: Recognizing context-aware activities of daily living using RGBD sensor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 2222–2227. IEEE (2013)Google Scholar
  11. 11.
    Goncalves, N., Costa, S., Rodrigues, J., Soares, F.: Detection of stereotyped hand flapping movements in Autistic children using the Kinect sensor: A case study. In: Autonomous Robot Systems and Competitions (ICARSC), Espinho, Portugal, pp. 212–216. IEEE (2014)Google Scholar
  12. 12.
    Gutiérrez López de la Franca, C., Hervás, R., Bravo, J.: Activity recognition in intelligent assistive environments through video analysis with body-angles algorithm. In: García-Chamizo, J.M., et al. (eds.) UCAmI 2015. LNCS, vol. 9454, pp. 162–173. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26401-1_16 CrossRefGoogle Scholar
  13. 13.
    Gutiérrez López de la Franca, C., Hervás, R.: Reconocimiento de Actividades de Propósito General mediante Kinect y el Algoritmo de Ángulos Corporales. Internal Report, University of Castilla-La Mancha (2016)Google Scholar
  14. 14.
    Johnson, E., Hervás, R., Gutiérrez López de la Franca, C., Mondéjar, T., Ochoa, S.F., Favela, J.: Assessing empathy and managing emotions through interactions with an affective avatar. Health Inf. J., 1–12 (2016). doi: 10.1177/1460458216661864
  15. 15.
    Kunze, K., Lukowicz, P., Junker, H., Tröster, G.: Where am I: recognizing on-body positions of wearable sensors. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 264–275. Springer, Heidelberg (2005). doi: 10.1007/11426646_25 CrossRefGoogle Scholar
  16. 16.
    Kunze, K., Lukowicz, P.: Sensor placement variations in wearable activity recognition. IEEE Pervasive Comput. 13(4), 32–41 (2014)CrossRefGoogle Scholar
  17. 17.
    Kusumam, K.: Relational learning using body parts for human activity recognition videos. Technical report, University of Lincoln (2012)Google Scholar
  18. 18.
    Ladha, C., Hammerla, N., Hughes, E., Olivier, P., Plötz, T.: Dog’s life: wearable activity recognition for dogs. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, pp. 415–418. ACM (2013)Google Scholar
  19. 19.
    Leightley, D., Darby, J., Li, B., McPhee, J.S., Yap, M.H.: Human activity recognition for physical rehabilitation. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, United Kingdom, pp. 261–266. IEEE (2013)Google Scholar
  20. 20.
    Mondéjar, T., Hervás, R., Johnson, E., Gutiérrez, C., Latorre, J.M.: Correlation between videogame mechanics and executive functions through EEG analysis. J. Biomed. Inform. 63, 131–140 (2016)CrossRefGoogle Scholar
  21. 21.
    Polana, R., Nelson, R.: Low level recognition of human motion (or how to get your man without finding his body parts). In: Proceedings of the 1994 IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, Texas, USA, pp. 77–82. IEEE (1994)Google Scholar
  22. 22.
    Ramirez-Giraldo, D., Molina-Giraldo, S., Alvarez-Meza, A.M., Daza-Santacoloma, G., Castellanos-Dominguez, G.: Kernel based hand gesture recognition using kinect sensor. In: XVII Symposium on Image, Signal Processing, and Artificial Vision (STSIVA), Antioquia, Turkey, pp. 158–161. IEEE (2012)Google Scholar
  23. 23.
    Raso, I., Hervás, R., Bravo, J.: m-Physio: personalized accelerometer-based physical rehabilitation platform. In: Proceedings of the Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Florence, Italy, pp. 416–421 (2010)Google Scholar
  24. 24.
    Ryoo, M.S., Matthies, L.: First-person activity recognition: what are they doing to me?. In: Computer Vision and Pattern Recognition (CVPR), Portland, USA, pp. 2730–2737. IEEE (2013)Google Scholar
  25. 25.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24646-6_10 CrossRefGoogle Scholar
  26. 26.
    Veltmaat, M.J.T., van Otterlo, M., Vogt, J.: Recognizing activities with the Kinect. Technical report, Radboud University Nijmagen (2013)Google Scholar
  27. 27.
    Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. J. Frontiers Robot. AI 2, 28 (2015)Google Scholar
  28. 28.
    Yang, Z., Zicheng, L., Hong, C.: RGB-Depth feature for 3D human activity recognition. Communications, China 10(7), 93–103 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carlos Gutiérrez López de la Franca
    • 1
  • Ramón Hervás
    • 1
  • Esperanza Johnson
    • 1
  • José Bravo
    • 1
  1. 1.Escuela Superior de Informática de Ciudad Real, Laboratorio MamIUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations