A Sensor-Driven Framework for Rapid Prototyping of Mobile Applications Using a Context-Aware Approach

  • Borja GamechoEmail author
  • Luis Gardeazabal
  • Julio Abascal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10069)


The development of mobile context-aware applications using sensors require the developers to understand several diverse issues: signal acquisition, network protocols, embedded systems, data filtering, etc. We designed and implemented a software framework in order to assist developers in prototyping. Our framework facilitates the use of sensors from wearable devices and supports the reusability of components following a modular approach. This paper describes the design of our approach and highlights the benefits of the framework for the development of mobile applications. To evaluate the framework, representative context-aware applications are described as a case study. The usability of the applications were tested with 26 participants and good results were obtained.


Context-aware computing Mobile and wearable computing Rapid prototyping framework 



This work has been supported by the Ministry of Economy and Competitiveness of the Spanish Government and by the European Regional Development Fund (projects TIN2013-41123-P and TIN2014-52665-C2-1-R), and by the Department of Education, Universities and Research of the Basque Government under grant IT980-16. The last two authors belong to the Basque Advanced Informatics Laboratory (BAILab), grant UFI11/45, supported by the University of the Basque Country (UPV/EHU). B. Gamecho is backed by the “Convocatoria de contratación de doctores recientes hasta su integración en programas de formación postdoctoral en la UPV/EHU 2015”.


  1. 1.
    Hervás, R., Bravo, J., Fontecha, J.: An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments. IEEE J. Biomed. Health Inform. 18(1), 368–374 (2014)CrossRefGoogle Scholar
  2. 2.
    Fontecha, J., Navarro, F.J., Hervás, R., Bravo, J.: Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Pers. Ubiquit. Comput. 17(6), 1073–1083 (2013)CrossRefGoogle Scholar
  3. 3.
    Wiese, J., Saponas, T.S., Brush, A.B.: Phoneprioception: enabling mobile phones to infer where they are kept. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2157–2166. ACM, New York (2013)Google Scholar
  4. 4.
    Silva, H., Fred, A., Martins, R.P.: Biosignals for everyone. IEEE Pervasive Comput. 13(4), 64–71 (2014)CrossRefGoogle Scholar
  5. 5.
    Burns, A., Greene, B.R., McGrath, M.J., O’Shea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: Shimmer a wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010)CrossRefGoogle Scholar
  6. 6.
    Morris, D., Scott, T., Tan, D.S.: Emerging input technologies for always-available mobile interaction. Found. Trends HCI 4(4), 245–316 (2011)Google Scholar
  7. 7.
    Banos, O., Garcia, R., Holgado-Terriza, J.A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K., Velde, W.: Advanced interaction in context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 89–101. Springer, Heidelberg (1999). doi: 10.1007/3-540-48157-5_10 CrossRefGoogle Scholar
  9. 9.
    Jang, E.H., Park, B.J., Kim, S.H., Chung, M., Park, M.S., Sohn, J.H.: Classification of three negative emotions based on physiological signals. In: Proceedings of Intelli 2013, pp. 75–78 (2013)Google Scholar
  10. 10.
    Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion recognition using biosensors: first steps towards an automatic system. In: Proceedings of ADS, pp. 36–48. Springer (2004)Google Scholar
  11. 11.
    Chon, J., Cha, H.: Lifemap: a smartphone-based context provider for location-based services. IEEE Pervasive Comput. 10(2), 58–67 (2011)CrossRefGoogle Scholar
  12. 12.
    Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)CrossRefGoogle Scholar
  13. 13.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Georgia Institute of Technology (2000)Google Scholar
  14. 14.
    Schmidt, A.: Ubiquitous computing-computing in context. Ph.D. thesis, Lancaster University (2003)Google Scholar
  15. 15.
    Kukkonen, J., Lagerspetz, E., Nurmi, P., Andersson, M.: Betelgeuse: a platform for gathering and processing situational data. IEEE Pervasive Comput. 8(2), 49–56 (2009)CrossRefGoogle Scholar
  16. 16.
    Winograd, T.: Architectures for context. Hum. Comput. Interact. 16(2), 401–419 (2001)CrossRefGoogle Scholar
  17. 17.
    Korpipa, P.: Blackboard-based software framework and tool for mobile device context awareness. Ph.D. dissertation, University of Oulu, Faculty of Technology (2005)Google Scholar
  18. 18.
    Ferreira, D.: Aware: a mobile context instrumentation middleware to collaboratively understand human behavior. Ph.D. dissertation, University of Oulu, Faculty of Technology (2013)Google Scholar
  19. 19.
    Paspallis, N., Papadopoulos, G.A.: A pluggable middleware architecture for developing context-aware mobile applications. Pers. Ubiquit. Comput. 18(5), 1099–1116 (2014)CrossRefGoogle Scholar
  20. 20.
    Crockford, D.: The application/json media type for javascript object notation (json) (2006)Google Scholar
  21. 21.
    Cânovas, M., Silva, H., Lourenço, A., Canento, F., Fred, A.: MobileBIT: a framework for mobile interaction recording and display. In: Proceedings of the 6th Conference on Health Informatics (HEALTHINF), pp. 366–369 (2013)Google Scholar
  22. 22.
    Gamecho, B., Guerreiro, J., Alves, A.P., Lourenço, A., Silva, H.P., Gardeazabal, L., Abascal, J., Fred, A.: Evaluation of a context-aware application for mobile robot control mediated by physiological data: the tobitas case study. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds.) UCAmI 2014. LNCS, vol. 8867, pp. 147–154. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-13102-3_26 Google Scholar
  23. 23.
    Gamecho, B., Silva, H., Guerreiro, J., Gardeazabal, L., Abascal, J.: A context-aware application to increase elderly users compliance of physical rehabilitation exercises at home via animatronic biofeedback. J. Med. Syst. 39, 135 (2015)CrossRefGoogle Scholar
  24. 24.
    Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Borja Gamecho
    • 1
    • 2
    Email author
  • Luis Gardeazabal
    • 1
    • 2
  • Julio Abascal
    • 1
  1. 1.Egokituz LaboratoryUniversity of the Basque Country (UPV/EHU)DonostiaSpain
  2. 2.Wimbi Technologies S.L. (WimbiTek)DonostiaSpain

Personalised recommendations