Towards an Awareness Interpretation for Physical and Cognitive Rehabilitation Systems

  • Miguel A. Teruel
  • Elena Navarro
  • Pascual González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10069)


When collaborating remotely, being aware of other participants (their actions, locations, status, etc.) is paramount to achieve a proper collaboration. This issue is magnified when talking about rehabilitation systems, whose users may require additional specific awareness information, due to their cognitive or physical disabilities. Moreover, because of these disabilities, this awareness may be provided by using specific feedback stimuli. This constituted the main motivation of this work: the development of an awareness interpretation for collaborative cognitive and physical therapies. With this aim, an awareness interpretation already applied to the collaborative games field has been modified and extended to make it suitable for these systems. Furthermore, in order to put this interpretation into practice, a case study based on an association image-writing rehabilitation pattern is presented illustrating how this cognitive rehabilitation task has been extended with collaborative features and enriched with awareness information.


Awareness Collaboration Virtual rehabilitation rooms Physical rehabilitation Cognitive rehabilitation Case study 



This research has been funded by the Spanish Ministry of Economy and Competitiveness and by the FEDER funds of the EU under the projects grants TIN2016-79100-R and TIN2015-72931-EXP. It has also been funded by Spanish Ministry of Education, Culture and Sports with the FPU scholarship (AP2010-0259).


  1. 1.
    Oh, H., Rizo, C., Enkin, M., Jadad, A., Powell, J., Pagliari, C.: What is ehealth (3): a systematic review of published definitions. J. Med. Internet Res. 7, e1 (2005)CrossRefGoogle Scholar
  2. 2.
    Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of ehealth on the quality and safety of health care: a systematic overview. PLoS Med. 8, e1000387 (2011)CrossRefGoogle Scholar
  3. 3.
    Brennan, D.M., Mawson, S., Brownsell, S.: Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management. Stud. Health Technol. Inform. 145, 231–248 (2009)Google Scholar
  4. 4.
    European Commission Information Society and Media: ICT for Health and i2010: Transforming the European Healthcare Landscape Towards a Strategy for ICT for Health. European Comission, Luxembourg (2006)Google Scholar
  5. 5.
    Rodrıguez, A.C., Roda, C., Montero, F., González, P., Navarro, E.: A collaborative system for designing tele-therapies. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 377–385. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Montero, F., López-Jaquero, V., Navarro, E., Sánchez, E.: Computer-aided relearning activity patterns for people with acquired brain injury. Comput. Educ. 57, 1149–1159 (2011)CrossRefGoogle Scholar
  7. 7.
    Roda, C., Rodriguez, A.C., Lopez-Jaquero, V., Navarro, E., Gonzalez, P.: A multi-agent system for acquired brain injury rehabilitation in ambient intelligence environments. Neurocomputing (2016, in press)Google Scholar
  8. 8.
    Gascueña, J.M., Navarro, E., Fernández-Sotos, P., Fernández-Caballero, A., Pavón, J.: IDK and ICARO to develop multi-agent systems in support of ambient intelligence. J. Intell. Fuzzy Syst. 28, 3–15 (2015)Google Scholar
  9. 9.
    Oliver, M., González, P., Montero, F., Molina, J.P., Fernández-Caballero, A.: Smart computer-assisted cognitive rehabilitation for the ageing population. In: Lindgren, H., De Paz, J.F., Novais, P., Fernández-Caballero, A., Yoe, H., Ramirez, A.J., Villarrubia, G. (eds.) Ambient Intelligence-Software and Applications – 7th International Symposium on Ambient Intelligence (ISAm I 2016). Advances in Intelligent Systems and Computing, vol. 476, pp. 197–205. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  10. 10.
    Rodríguez, A.C., Roda, C., Montero, F., González, P., Navarro, E.: An interactive fuzzy inference system for teletherapy of older people. Cognit. Comput. 8, 318–335 (2016)CrossRefGoogle Scholar
  11. 11.
    Doig, E., Fleming, J., Kuipers, P.: Achieving optimal functional outcomes in community-based rehabilitation following acquired brain injury: a qualitative investigation of therapists’ perspectives. Br. J. Occup. Ther. 71, 360–370 (2008)CrossRefGoogle Scholar
  12. 12.
    Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for real-time groupware. Comput. Support. Coop. Work 11, 411–446 (2002)CrossRefGoogle Scholar
  13. 13.
    Navarro, E., López-Jaquero, V., Montero, F.: HABITAT: a web supported treatment for acquired brain injured. In: IEEE International Conference on Eighth Advanced Learning Technologies (ICALT 2008), pp. 464–466 (2008)Google Scholar
  14. 14.
    Krynicki, K., Jaen, J., Navarro, E.: An ACO-based personalized learning technique in support of people with acquired brain injury. Appl. Soft Comput. 47, 316–331 (2016)CrossRefGoogle Scholar
  15. 15.
    Rubio, G., Navarro, E., Montero, F.: APADYT: a multimedia application for SEN learners. Multimed. Tools Appl. 71, 1771–1802 (2014)CrossRefGoogle Scholar
  16. 16.
    Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., Jaen, J., González, P.: Analyzing the understandability of requirements engineering languages for CSCW systems: a family of experiments. Inf. Softw. Technol. 54, 1215–1228 (2012)CrossRefGoogle Scholar
  17. 17.
    Teruel, M.A., Navarro, E., González, P., López-Jaquero, V., Montero, F.: Applying thematic analysis to define an awareness interpretation for collaborative computer games. Inf. Softw. Technol. 74, 17–44 (2016)CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Dimbwadyo-Terrer, I., de los Reyes-Guzman, A., Bernal-Sahun, A., Lopez-Montaegudo, P., Trincado-Alonso, F., Polonio-Lopez, B., Gil-Agudo, A.: Virtual reality system toyra: a new tool to assess and treatment for upper limb motor impairment in patients with spinal cord injury. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation. Biosystems & Biorobotics, vol. 1, pp. 853–858. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Tong, R.K.Y., Hang, C.H., Chong, L.K.W., Lam, N.K.F.: KineLabs 3D motion software platform using kinect. In: 2012 International Conference on Computerized Healthcare (ICCH), pp. 164–165 (2012)Google Scholar
  22. 22.
    Oliver, M., Molina, J.P., Montero, F., González, P., Fernández-Caballero, A.: Wireless multisensory interaction in an intelligent rehabilitation environment. In: Ramos, C., Novais, P., Nihan, C.E., Rodriguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications: 5th Int Symposium on Ambient Intelligence (ISAMI). Advances in Intelligent Systems and Computing, vol. 291, pp. 193–200. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    Pirovano, M., Mainetti, R., Baud-Bovy, G., Lanzi, P.L., Borghese, N.A.: Self-adaptive games for rehabilitation at home. In: 2012 IEEE Conference on Computational Intelligence and Games (CIG), pp. 179–186. (2012)Google Scholar
  24. 24.
    Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32, 2566–2570 (2011)CrossRefGoogle Scholar
  25. 25.
    Brennan, D.M., Georgeadis, A.C., Baron, C.R., Barker, L.M.: The effect of videoconference-based telerehabilitation on story retelling performance by brain-injured subjects and its implications for remote speech-language therapy. Telemed. J. E. Health 10, 147–154 (2004)CrossRefGoogle Scholar
  26. 26.
    Kurillo, G., Han, J.J., Nicorici, A., Bajcsy, R.: Tele-MFAsT: kinect-based tele-medicine tool for remote motion and function assessment. In: Studies in Health Technology and Informatics, pp. 215–221. IOS Press (2014)Google Scholar
  27. 27.
    González, C.S., Toledo, P., Padrón, M., Santos, E., Cairos, M.: TANGO:H: creating active educational games for hospitalized children. In: Casillas, J., Martinez-Lopez, F.J., Vicari, R., De la Prieta, F. (eds.) Management Intelligent Systems, pp. 135–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Cusveller, J., Gerritsen, C., de Man, J.: Evoking and measuring arousal in game settings. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, vol. 8395, pp. 165–174. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Joho, H., Jose, J.M., Valenti, R., Sebe, N.: Exploiting facial expressions for affective video summarisation. In: ACM International Conference on Image and Video Retrieval (CIVR 2009), pp. 31:1–31:8 (2009)Google Scholar
  30. 30.
  31. 31.
    Apple Inc.: Apple Watch.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Miguel A. Teruel
    • 1
  • Elena Navarro
    • 1
  • Pascual González
    • 1
  1. 1.LoUISE Research Group, Computing Systems DepartmentUniversity of Castilla – La ManchaAlbaceteSpain

Personalised recommendations