Skip to main content

Natural Rubber Nanoblends: Preparation, Characterization and Applications

  • Chapter
  • First Online:
Rubber Nano Blends

Abstract

Natural rubber nanocomposites are emerging as one of the key players in the industry and research due to its novel material properties and nanofunctionalities. The development of nanotechnology provided a wide range of methods for the synthesis of novel multifunctional nanofillers and blending them with natural rubber to make high performance natural rubber nanocomposites. In this chapter we summarizes the advanced methods for synthesis, characterization and applications of natural rubber nanoblends using various techniques including skim latex mixing, latex/melt intercalation, freeze drying and in-situ non-aqueous sol-gel method. A detailed description of advanced nanomaterial characterization methods like XRD, XPS, XRF, UV–Vis spectroscopy, Photoluminescence spectroscopy, Raman spectroscopy, TGA-DTA, SEM-EDX, EPMA, TEM-SAED, VSM and FTIR are also elaborated for understanding the physicochemical characteristics of nanofillers and natural rubber nanocomposites. A brief outline of current trends in the development of nanomaterials for filler applications was summarized. The fundamental aspects of design and utilization of various nanostructured materials including carbon nanotubes, clay, iron oxide, zinc oxide, nickel, silica, gold, silver and graphene based filler materials are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polymer J 46:609–620

    Article  CAS  Google Scholar 

  2. Jinrong W et al (2013) Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 54:3314–3323

    Article  Google Scholar 

  3. Suil G et al (2008) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    Google Scholar 

  4. Thomas PS et al (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349

    Article  Google Scholar 

  5. Nakason C, Kaesaman A, Supasanthitikul P (2004) The grafting of maleic anhydride onto natural rubber. Polym Testing 23(1):35–41

    Article  CAS  Google Scholar 

  6. Bokobza L (2012) Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties, eXPRESS. Polym Lett 6(3):213–223

    Article  CAS  Google Scholar 

  7. Il-Jin K et al (2010) Effect of nano zinc oxide on the cure characteristics and mechanical properties of the silica-filled natural rubber/butadiene rubber compounds. J Appl Polym Sci 117:1535–1543

    Google Scholar 

  8. Abraham E et al (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20:417–427

    Article  CAS  Google Scholar 

  9. Kumari P, Unnikrishnan G (2013) Thermal properties of compatibilized and filled natural rubber/acrylonitrile butadiene rubber blends. J Therm Anal Calorim 114:67–75

    Google Scholar 

  10. Ajesh KZ et al (2014) Rheological behaviour of clay incorporated natural rubber and chlorobutyl rubber nanocomposites. RSC Adv 4:58047–58058

    Article  Google Scholar 

  11. Jamal EMA et al (2009) Synthesis of nickel–rubber nanocomposites and evaluation of their dielectric properties. Mater Sci Eng B 156:24–31

    Article  CAS  Google Scholar 

  12. Flavio C et al (2014) Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. Luminescence 29:1047–1052

    Article  Google Scholar 

  13. Bakar NHHA, Ismail J, Bakar MA (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283

    Article  Google Scholar 

  14. Zakaria MZ, Ahmad SH (2013) Investigation on thermal conductivity and mechanical properties of thermoplastic natural rubber filled with alumina and boron carbide nanocomposites. Energy Environ Eng J 4(1):11–14

    Article  Google Scholar 

  15. Dong-Ah L et al (2012) Natural rubber/fluoroelastomer blended composites using colloid stabilization-destabilization method. Macromol Res 20(7):673–681

    Article  Google Scholar 

  16. Kaltseis R et al (2014) Natural rubber for sustainable high-power electrical energy generation. RSC Adv 4:27905

    Article  CAS  Google Scholar 

  17. Quitmann D et al (2013) Solvent-sensitive reversible stress-response of shape memory natural rubber. ACS Appl Mater Interfaces 5:3504–3507

    Article  CAS  Google Scholar 

  18. Venkatanarasimhan S, Raghavachari D (2013) Epoxidized natural rubber–magnetite nanocomposites for oil spill recovery. J Mater Chem A 1:868

    Article  CAS  Google Scholar 

  19. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816

    Article  CAS  Google Scholar 

  20. Parulekar Y, Mohanty AK (2006) Biodegradable toughened polymers from renewable resources: blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chem 8:206–213

    Article  CAS  Google Scholar 

  21. Kong I et al (2010) Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. J Magn Magn Mater 322:3401–3409

    Article  CAS  Google Scholar 

  22. Sookyung U et al (2014) Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polym Testing 33:48–56

    Article  CAS  Google Scholar 

  23. Hernandez M et al (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46

    Article  CAS  Google Scholar 

  24. Potts JR et al (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055

    Article  CAS  Google Scholar 

  25. Alex R, Nah C (2006) Preparation and characterization of organoclay-rubber nanocomposites via a new route with skim natural rubber latex. J Appl Polym Sci 102:3277–3285

    Article  CAS  Google Scholar 

  26. Abdollahi M et al (2011) Structure and properties of natural rubber/butadiene rubber (NR/BR) blend/sodium montmorillonite nanocomposites prepared via a combined latex/melt intercalation method. Polym Sci Ser A 53(12):1175–1181

    Article  CAS  Google Scholar 

  27. Pojanavaraphan T, Magaraphan R (2008) Prevulcanized natural rubber latex/clay aerogel nanocomposites. Eur Polym J 44:1968–1977

    Article  CAS  Google Scholar 

  28. WahbaL et al (2014) A novel non-aqueous sol–gel route for the in situ synthesis of high loaded silica–rubber nanocomposites. Soft Matter 10:2234–2244

    Article  Google Scholar 

  29. Thaptong P et al (2014) Properties of natural rubber reinforced by carbon black-based hybrid fillers. Polym-Plast Technol Eng 53(8):818–823

    Article  CAS  Google Scholar 

  30. Bhattacharya M, Bhowmick AK (2010) Synergy in carbon black-filled natural rubber nanocomposites Part I: mechanical, dynamic mechanical properties and morphology. J Mater Sci 45:6126–6138

    Google Scholar 

  31. Mondragon M et al (2009) Injection molded thermoplastic starch/natural rubber/clay nanocomposites: morphology and mechanical properties. Carbohydr Polym 77:80–86

    Article  CAS  Google Scholar 

  32. Rezende CA et al (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polymer 51:3644–3652

    Article  CAS  Google Scholar 

  33. Kueseng K, Jacob KI (2006) Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. Eur Polymer J 42:220–227

    Article  CAS  Google Scholar 

  34. Kueseng P, Sae-oui P, Rattanasom N (2013) Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: effect of preparation methods. Polym Testing 32:731–738

    Article  CAS  Google Scholar 

  35. Sui G et al (2008) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    CAS  Google Scholar 

  36. Thomas PS et al (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349

    Article  Google Scholar 

  37. Zhang X et al (2013) Synthesis, optical and magnetic properties of α-Fe2O3 nanoparticles with various shapes. Mater Lett 99:111–114

    Article  CAS  Google Scholar 

  38. Qiaoling LI, Zhang C (2010) Preparation of Fe2O3 microtubules and the effect of a surfactant on their properties. J Ceram Process Res 11(3):331–334

    Google Scholar 

  39. Chirita M, Grozescu I (2009) Fe2O3—nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem bull “POLITEHNICA” Univ (Timisoara) 54(68): 1–8

    Google Scholar 

  40. Jong-Ryul J et al (2004) Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys Status Solidi (b) 241(7):1593–1596

    Article  Google Scholar 

  41. Suber L et al (1998) Structural and magnetic properties of α-Fe2O3 nanoparticles. Appl Organomet Chem 12:347–351

    Article  CAS  Google Scholar 

  42. Akbar S et al (2004) Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations. Ar Xiv:cond-mat/0408480

    Google Scholar 

  43. Teng X, Yang H (2004) Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. J Mater Chem 14:774–779

    Article  CAS  Google Scholar 

  44. Sahoo SK et al (2010) Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int J Eng Sci Technol 2(8):118–126

    Google Scholar 

  45. Ma J et al (2010) α-Fe2O3: hydrothermal synthesis, magnetic and electrochemical properties. J Phys Chem C 114(24):10671–10676

    Google Scholar 

  46. Liu L et al (2006) Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B 110(31):15218–15223

    Article  CAS  Google Scholar 

  47. Wu C et al (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110(36):17806–17812

    Article  CAS  Google Scholar 

  48. Liao L et al (2008) Morphology controllable synthesis of α-Fe2O3 1D nanostructures: growth mechanism and nano device based on single nanowire. J Phys Chem C 112(29):10784–10788

    Article  CAS  Google Scholar 

  49. Wang X et al (2009) Fast preparation, characterization, and property study of α-Fe2O3 nanoparticles via a simple solution-combusting method. J Phys Chem C 113(17):7003–7008

    Article  CAS  Google Scholar 

  50. Cao SW, Zhu YJ (2008) Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J Phys Chem C 112(16):6253–6257

    Article  CAS  Google Scholar 

  51. El-Nashar DE, Mansour SH, Girgis E (2006) Nickel and iron nano-particles in natural rubber composites. J Mater Sci 41:5359–5364

    Article  CAS  Google Scholar 

  52. Duchacek V (1978) Effect of thiourea on thiuram-accelerated sulfur vulcanization and its significance for vulcanization mechanism. J Appl Polym Sci 22(1):227–237

    Article  CAS  Google Scholar 

  53. Barnard D et al (1970) Rubber natural. Encyclopedia of polymer science and technology: plastics, resins, rubbers, fibers 12:178

    Google Scholar 

  54. Sahoo S et al (2008) Synthetic zinc oxide nanoparticles as curing agent for polychloroprene. Polym Polym Compos 16(3):193–198

    CAS  Google Scholar 

  55. Lee PC, Meisel DJ (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J PhysChem 86:3391–3395

    CAS  Google Scholar 

  56. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Farad Trans II 75:790–798

    Article  CAS  Google Scholar 

  57. Sabura BPM (2010) Studies on the use of nano zinc oxide and modified silica in NR, CR and SBR. http://hdl.handle.net/10603/1406

  58. El-Nashar DE, Mansour SH, Girgis E (2006) Nickel and iron nano-particles in natural rubber composites. J Mater Sci 41:5359–5364

    Article  CAS  Google Scholar 

  59. Jamal EMA et al (2009) Synthesis of nickel–rubber nanocomposites and evaluation of their dielectric properties. Mater Sci Eng B 156:24–31

    Article  CAS  Google Scholar 

  60. Sarkawi SS et al (2013) Morphology of silica reinforced natural rubber: the effect of silane coupling agent. Presented at the fall 184th technical meeting of the rubber division of the American Chemical Society, inc. Cleveland, Ohio, 7–10 Oct. ISSN 1547-1977

    Google Scholar 

  61. Debapriya D et al (2014) Effect of sol-gel-derived nano-silica on the properties of natural rubber-poly butadiene rubber-reclaim rubber ternary blends/silica nanocomposites. Polym-Plast Technol Eng 53:1131–1141

    Article  Google Scholar 

  62. Scotti R et al (2012) Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8:2131–2143

    Article  CAS  Google Scholar 

  63. Chuayjuljit S, Boonmahitthisud A (2010) Natural rubber nanocomposites using polystyrene-encapsulated nanosilica prepared by differential microemulsion polymerization. Appl Surf Sci 256:7211–7216

    Article  CAS  Google Scholar 

  64. Lay M et al (2013) Effect of nanosilica fillers on the cure characteristics and mechanical properties of natural rubber composites. Adv Mater Res 626:818–822

    Article  Google Scholar 

  65. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  66. Flavio C et al (2014) Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. Luminescence 29:1047–1052

    Article  Google Scholar 

  67. BakarNHH Abu, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283

    Article  Google Scholar 

  68. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55–75

    Article  Google Scholar 

  69. Lee PC, Meisel DJ (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriparambil Sivaraman Nirmal Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nirmal Ghosh, O.S., Gayathri, S., Sudhakara, P., Misra, S.K., Jayaramudu, J. (2017). Natural Rubber Nanoblends: Preparation, Characterization and Applications. In: Markovic, G., P. M., V. (eds) Rubber Nano Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-48720-5_2

Download citation

Publish with us

Policies and ethics