Skip to main content

Hybrid Memories Based on Redox Molecules

  • Chapter
  • First Online:
  • 736 Accesses

Abstract

The attempt to use molecules as functional parts of nanoelectronic devices is based on the benefits expected from their inherent properties. They are stable, with well-defined energy levels, capable of combining chemically to form larger composites with desired properties, capable of self-assembling in dense nanostructures on surfaces and the energy required for their manipulation and during device operation is much less compared to solid-state semiconductor devices. Furthermore if the target of scaling down a specific logic operation in one molecule is achieved, current miniaturization limits will be surpassed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Arahdya, L. Venkataraman, Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013)

    Article  Google Scholar 

  2. P. Argitis, R. Shrinivas, J. Carls, A. Heller, Micropatterned films of Tungsten nuclei for subsequent metallization formed of a phosphotungstic acid-based negative resist. J. Electrochem. Soc. 139, 2889–2894 (1992)

    Article  Google Scholar 

  3. A. Aviram, M. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  Google Scholar 

  4. C. Baffert, J. Boas, A. Bond, P. Koegerler, D. Long, J. Pilbrow et al., Experimental and theoretical investigations of the sulfite based polyoxometalate Mo18 O54 (SO4)3. Chem. Eur. J. 12(33), 8472–8483 (2006)

    Article  Google Scholar 

  5. A. Balliou, G. Papadimitropoulos, G. Skoulatakis, S. Kennou, D. Davazoglou, S. Gardelis et al., Low dimensional polyoxometalate molecules/tantalum oxide hybrids for non-volatile capacitive memories. ACS Appl. Mater. Interface 8(11), 7212–7220 (2016)

    Google Scholar 

  6. A. Balliou, A. Douvas, P. Normand, D. Tsikritzis, S. Kennou, N. Glezos, Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors. J. Appl. Phys. 116(143703), 1–13 (2014)

    Google Scholar 

  7. C. Busche, L. Vila-Nadal, J. Yan, H. Miras, D.-L. Long, V. Georgiev et al., Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 515, 545–549 (2014)

    Article  Google Scholar 

  8. G. Cerofolini, E. Romano, Molecular electronics in silico. Appl. Phys. A 91, 181–210 (2008)

    Article  Google Scholar 

  9. G. Chaidogiannos, D. Velessiotis, P. Argitis, P. Koutsolelos, C. Diakoumakos, D. Tsamakis et al., Tunneling and negative resistance effects for composite materials containing polyoxometalate molecules. Microelectron. Eng. 73–74, 746–751 (2004)

    Article  Google Scholar 

  10. J. Chen, W. Wang, M. Reed, A. Rawlett, D. Price, J. Tour, Room-temperature negative differential resistance in nanoscale. Appl. Phys. Lett. 77, 1224–1226 (2000)

    Article  Google Scholar 

  11. Y. Chen, G.-Y. Young, D. Ohlberg, X. Li, D. Steward, J. Jeppesen et al., Nanoscale molecular-switch crossbar. Nanotechnology 14, 462–468 (2003)

    Article  Google Scholar 

  12. M. Clemente-Leon, E. Coronado, C. Gomez-Garcia, C. Mingotaud, S. Ravaine, G. Romualdo-Torres et al., Polyoxometalate monolayers in Langmuir-Blodgett films. Chem. Eur. J. 11, 3979–3987 (2005)

    Article  Google Scholar 

  13. C. Collier, E. Wong, M. Belohradsky, F. Reymo, J. Stoddard, P. Kuekes et al., Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  Google Scholar 

  14. S. Cummings, J. Savchenko, T. Reng, Functionalization of flat Si surfaces with inorganic compounds—towards molecular CMOS hybrid devices. Coord. Chem. Reviews 255, 1587–1602 (2011)

    Article  Google Scholar 

  15. G. Cuniberti, G. Fagas, K. Richter, Introducing Molecular Electronics (Springer, Berlin, 2005)

    Book  Google Scholar 

  16. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, 1995)

    Google Scholar 

  17. S. Datta, Lessons from Nanoelectronics: A New Perspective in Transport (World Scientific Publishing, 2012)

    Google Scholar 

  18. B. De Salvo, J. Buckley, Organic-based molecular and polymer memories. White Paper for ITRS ERD Working Group, 1–10 (2010)

    Google Scholar 

  19. B. De Salvo, J. Buckley, D. Vuillaume, Recent results on organic-based molecular memories. Curr. Appl. Phys. 11, e49–e57 (2011)

    Article  Google Scholar 

  20. S. Deleonibus, Electronic Device Architectures for the post-CMOS Era (Pan Stanford Publishing, 2009)

    Google Scholar 

  21. S. Deruich, C. Rinfray, G. Izzet, J. Pinson, J.-J. Gallet, F. Kanoufi et al., Control of the grafting of hybrid polyoxometalates on metal and carbon surfaces: toward submonolayers. Langmuir 30, 2287–2296 (2014)

    Article  Google Scholar 

  22. M. Di Ventra, S. Pantelides, N. Lang, Current-induced forces in molecular wires. Phys. Rev. Lett. 046801, 1–4 (2002)

    Google Scholar 

  23. I. Diez-Perez, J. Hiharth, Y. Lee, L. Yu, L. Adamska, M. Kozhusher et al., Rectification and stability of a single molecular diode with controlled orientation. Nature Chemistry 1, 635–641 (2009)

    Article  Google Scholar 

  24. A. Douvas, E. Makarona, N. Glezos, P. Argitis, J. Mielzarski, E. Mielzarski, Polyoxometalate-based layered structures for charge transport control in molecular devices. ACS Nano 2(4), 733–742 (2008)

    Article  Google Scholar 

  25. D. Ferry, S. Goodnick, Transport in Nanostructures (Cambridge Univeristy Press, 1997)

    Google Scholar 

  26. C. Fleming, D.-L. Long, M. Macmillan, J. Johnston, N. Bovet, V. Dhanak et al., Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by mewtallic substrates. Nat. Nanotechnol. 3, 229–233 (2008)

    Article  Google Scholar 

  27. V. Georgiev, S. Amoroso, T. Mahmood Ali, L. Vila Nanal, Comparison between Bulk and FDSOI POM flash cell: a multiscale simulation study. IEEE Trans. Electron Devices 62, 680–684 (2015)

    Article  Google Scholar 

  28. N. Glezos, P. Argitis, D. Velessiotis, C. Diakoumakos, Tunneling transport in polyoxometalate based composite materials. Appl. Phys. Lett. 83, 488–490 (2003)

    Article  Google Scholar 

  29. N. Glezos, A. Douvas, P. Argitis, F. Saurenbach, J. Chrost, C. Livitsanos, Electrical characterization of molecular monolayers coantianing tungsten polyoxometalates. Microelectron. Eng. 83, 1757–1760 (2006)

    Article  Google Scholar 

  30. S. Gowda, G. Mathur, Q. Li, S. Surthi, V. Misra, Hybrid Silicon/Molecular FETs: a study of the interaction of redox-molecules with Silicon MOSFETs. IEEE Trans. Nanotechnol. 5, 258–264 (2006)

    Article  Google Scholar 

  31. T. He, J. He, M. Lu, B. Chen, H. Pang, W. Reus et al., Controlled modulation of conductance in silicon devices by molecular monolayers. J. Am. Chem. Soc. 128, 14537–14541 (2006)

    Article  Google Scholar 

  32. K. Heinze, H. Lang, Ferrocene-Beauty and function. Organometallics 32(20) Special Issue, 5623–6146 (2013)

    Google Scholar 

  33. A. Hiskia, A. Mylonas, E. Papaconstantinou, Comparison of the photoredox properties of polyoxometalates and semiconducting particles. Chem. Soc. Rev. 30, 62–69 (2001)

    Article  Google Scholar 

  34. ITRS Roadmap, 4. Emerging Research Devices, 6–22 (2013)

    Google Scholar 

  35. M. Iwamoto, M. Wada, T. Kubota, Electron tranpsort mechanism through polyimide Langmuir-Blodgett films containing porphyrin. Thin Solid Films 243, 472–475 (1994)

    Article  Google Scholar 

  36. A. Jalabert, A. Amara, F. Clermidy, Molecular Electronics: Materials (Springer, Devices and Applications, 2008)

    Google Scholar 

  37. N. Joo, S. Renaudineau, G. Delapierre, L.-M. Chamoreau, R. Thouvenot, P. Gouzerh et al., Organosilyl/-germyl polyoxotungstate hybrids for covalent grafting onto silicon surfaces: towards molecular memories. Chem. Eur. J. 16, 5043–5051 (2010)

    Article  Google Scholar 

  38. M. Jurow, A. Schuckman, J. Batteas, C. Drain, Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254, 2297–2310 (2010)

    Article  Google Scholar 

  39. J. Kang, D. Schroder, The pulsed MIS capacitor. A critical overview. Phys. Stat. Sol. A 89, 13–43 (1985)

    Article  Google Scholar 

  40. E. Kapetanakis, A. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos et al. (2008). Molecular storage elements for proton memory devices. Adv. Mater. 4568–4584

    Google Scholar 

  41. E. Kapetanakis, A. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos et al., Hybrid organic–inorganic materials for molecular proton memory devices. Org. Elec. 10, 711–718 (2009)

    Article  Google Scholar 

  42. D. Katsoulis, A survey of applications of polyoxometalates. Chem. Rev. 98, 359–387 (1998)

    Article  Google Scholar 

  43. W. Kuhr, A. Gallo, R. Manning, C. Rhodine,. Molecular Memories based on a CMOS Platform. MRS Bull. 838–842 (2004) (November)

    Google Scholar 

  44. C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang et al., Multilevel memory based on molecular devices. Appl. Phys. Lett. 84, 1949–1951 (2004)

    Article  Google Scholar 

  45. E. Li, N. Marzari, Conductance switching and many-valued logic in porphyrin assemblies. J. Phys. Chem. Lett. 4, 3039–3044 (2013)

    Article  Google Scholar 

  46. Q. Li, Hybrid silicon-molecular electronics. Mod. Phys. Lett. B 22, 1183–1202 (2008)

    Article  Google Scholar 

  47. Q. Li, G. Mathur, S. Gowda, S. Surthi, Q. Zhao, L. Yu et al., Multibit memory using self-assembly of mixed ferrocene-porphyrin monolayers on siilicon. Adv. Mater. 16, 133–137 (2004)

    Article  Google Scholar 

  48. Q. Li, G. Mathur, M. Homsi, S. Surthi, V. Misra, V. Malinovski et al., Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on siliconsurfaces for memory applications. Appl. Phys. Lett. 81, 1494–1496 (2002)

    Article  Google Scholar 

  49. Q. Li, S. Surthi, G. Mathur, S. Gowda, V. Misra, T. Sorenson et al., Electrical characterizationof redox-active molecular monolayers on SiO2 for memory applications. Appl. Phys. Lett. 83, 198–200 (2003)

    Article  Google Scholar 

  50. Z. Liu, A. Yasseri, J. Lindsey, D. Bocian, Molecular memories that survive silicon device processing and real-world operation. Science 302, 1543–1545 (2003)

    Article  Google Scholar 

  51. D. Long, L. Cronin, Towards polyoxometalate-integrated nanosystems. Chem. Eur. J. 3698–3706 (2006)

    Google Scholar 

  52. D. Long, R. Tsunashima, L. Cronin, Polyoxomatalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 49, 2–25 (2010)

    Article  Google Scholar 

  53. S. Lyshevski,. Nano and Molecular Electronics Handbook (CRC Press, Taylor & Francis, 2007)

    Google Scholar 

  54. E. Makarona, E. Kapetanakis, D. Velessiotis, A. Douvas, P. Argitis, P. Normand et al., Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 85, 1399–1402 (2008)

    Article  Google Scholar 

  55. B. Mann, H. Kuhn, Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42(11), 4398–4406 (1971)

    Article  Google Scholar 

  56. R. McCreery, Molecular electronic junctions. Chem. Mater. 16, 4477–4493 (2004)

    Article  Google Scholar 

  57. J. Meena, S. Sze, U. Chand, T. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9(126), 1–33 (2014)

    Google Scholar 

  58. M. Petty, Molecular Electronics: From Principles to Practice (John Wiley and Sons, 2007)

    Google Scholar 

  59. M. Pope, A. Muller, Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl. 30, 34–48 (1991)

    Article  Google Scholar 

  60. T. Pro, J. Buckley, K. Huang, A. Calborean, M. Gely, G. Delapierre et al., Investigation of hybrid molecular/silicon memories with redox-active molecules acting a storage media. IEEE Trans. Nanotechnol. 204–213 (2009)

    Google Scholar 

  61. A. Proust, R. Thouvenot, P. Gouzerh, Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem. Commun. 1837–1852 (2008)

    Google Scholar 

  62. M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013)

    Article  Google Scholar 

  63. M. Reed, C. Zhou, C. Muller, T. Burgin, J. Tour, Conductance of a Molecular Junction. Science 278, 252–253 (1997)

    Article  Google Scholar 

  64. C. Richter, C. Hacker, L. Richter, E. Vogel, Molecular devices formed by direct monolayewr attachment to silicon. Solid State Electron. 48, 1747–1752 (2004)

    Article  Google Scholar 

  65. K. Roth, N. Dontha, R. Dabke, D. Gryko, C. Clausen, J. Lindsey et al., Molecular approach toward information storage basedon the redox properties pf porphyrines in self-assembled monolayers. JVST B 18, 2359–2364 (2000)

    Google Scholar 

  66. K. Roth, A. Yasseri, Z. Liu, R. Dabke, V. Malinovski, K.-H. Schweikart et al., Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/ semiconductor information storage devices. JACS 125, 505–517 (2003)

    Article  Google Scholar 

  67. J. Shaw, T.-H. Zhong, K. Hughes, T.-H. Hou, H. Raza, J. Bellfy et al., Integration of self-assembled redox molecules in flash memory devices. IEEE Trans. Electron Device 58, 826–834 (2011)

    Article  Google Scholar 

  68. W. Shockley, W. Read, Statistics of the recombination of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  Google Scholar 

  69. H. Song, Y. Kim, Y.-H. Jang, H. Jeong, M. Reed, T. Lee, Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)

    Article  Google Scholar 

  70. H. Song, M. Reed, T. Lee, Single molecule electronic devices. Adv. Mater. 23, 1583–1608 (2011)

    Article  Google Scholar 

  71. A. Szuchmacher Blum, J. Kushmerick, D. Long, C. Patterson, J. Yang, J. Henderson et al., Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005)

    Article  Google Scholar 

  72. K. Terada, K. Kanaizuka, M. Iyer, M. Sannodo, S. Saito, K. Kobayashi et al., Memory effects in molecular films of free-standing rod-shaped Ruthenium Complexes on an electrode. Angew. Chem. Int. Ed. 50, 6287–6291 (2011)

    Article  Google Scholar 

  73. J.M. Tour, Molecular Electronics - Commercial Insights, Chemistry, Devices and Programming (World Scientific Publishing Co. Pte. Ltd., 2003)

    Google Scholar 

  74. S. Van der Molen, P. Liljenroth, Charge transport through molecular. J. Phys. Condens. Matter 22(133001), 1–30 (2010)

    Google Scholar 

  75. D. Velessiotis, A. Douvas, P. Dimitrakis, P. Argitis, N. Glezos, Conduction mechanisms in tungsten-polyoxometalate self-assembled molecular junctions. Microelectron. Eng. 97, 150–153 (2012)

    Article  Google Scholar 

  76. D. Velessiotis, N. Glezos, V. Ioannou-Sougleridis, Tungstate polyoxometalates as active components of molecular devices. J. Appl. Phys. 98, 084503_1–4 (2005)

    Google Scholar 

  77. F. Volatron, J.-M. Noel, C. Rinfray, P. Decorse, C. Combellas, F. Kanoufi et al., Electron transfer properties of a monolayer of hybrid polyoxometalates on silicon. J. Mater. Chem. C 3, 6266–6275 (2015)

    Article  Google Scholar 

  78. D. Vuillaume, S. Lenfant, The metal/organic monolayer interface in molecular electronic devices. Microelectron. Eng. 70, 539–550 (2003)

    Article  Google Scholar 

  79. D. Vuillaume, Molecular nanoelectronics. Proc. IEEE 98, 2111–2123 (2010)

    Article  Google Scholar 

  80. W. Wang, T. Lee, M. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(035416), 1–6 (2003)

    Google Scholar 

  81. M. Yaqub, J. Walsh, T. Keyes, A. Proust, C. Rinfray, G. Izzet et al., Electron transfer to covalently immobilized Keggin polyoxotungstates on gold. Langmuir 30, 4509–4516 (2014)

    Article  Google Scholar 

  82. A. Yella, H.-W. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)

    Article  Google Scholar 

  83. H. Zhu, Q. Li, Novel molecular non-volatile memory: application of redox active molecules. Appl. Sci. 6(7), 1–15 (2016)

    Google Scholar 

  84. H. Zhu, C. Hacker, S. Pookpanratana, C. Richter, H. Yuan, H. Li et al., Non-volatile memory with self-assembled ferrocene charge trapping layer. Appl. Phys. Lett. 106(053102), 1–4 (2013)

    Google Scholar 

  85. H. Zhu, S. Pookpanratana, J. Bonevich, S. Natoli, C. Hacker, T. Ren et al., Redox-active molecular nanowire flash memory for high-endurance and high-density nonvolatile memory applications. ACS Appl. Mater. Interface 7(49), 27306–27313 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Glezos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Glezos, N. (2017). Hybrid Memories Based on Redox Molecules. In: Dimitrakis, P. (eds) Charge-Trapping Non-Volatile Memories. Springer, Cham. https://doi.org/10.1007/978-3-319-48705-2_3

Download citation

Publish with us

Policies and ethics