Skip to main content

Mate Searching Animals as Model Systems for Understanding Perceptual Grouping

  • Chapter
  • First Online:
Psychological Mechanisms in Animal Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 5))

Abstract

A critical component of communication in humans and nonhuman animals is the ability to group signals so that they can be assigned to their correct sources. This is especially true for mate choice behavior, as incorrect stimulus grouping could lead to inaccurate evaluation of signalers by receivers, ultimately resulting in costly mate choice decisions . Sexual signals are often complex, consisting of components that vary in several physical parameters and across sensory modalities. Thus, the mate choice behavior of receivers is well suited for psychophysical tests of the limits and mechanisms of perceptual grouping both within and across sensory modalities. This chapter examines perceptual grouping in comparative models of mate choice behavior. We focus primarily on mate attraction in frogs, reviewing first the effects of spectral, temporal, and spatial parameters on sequential and simultaneous auditory grouping. We then review research on cross-modal perceptual grouping of frog visual and acoustic signals, a perceptual ability analogous to that of grouping human speech with its coincident mouth movements. In addition, we suggest that data from comparative models are not only useful for understanding signal processing in animal communication but also for potentially understanding the fundamental mechanisms receivers use to sort complex signals across all taxa and how such mechanisms may evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho AC, Donner K, Hyden C, Larsen LO, Reuter T (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334(6180):348–350

    Article  CAS  PubMed  Google Scholar 

  • Amézquita A, Hödl W (2004) How, when, and where to perform visual displays: the case of the Amazonian frog Hyla parviceps. Herpetologica 60(4):420–429

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). J Comp Psychol 124:412–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee MA (2015) Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 95(2):216–237

    Article  PubMed  Google Scholar 

  • Bee MA, Klump GM (2004) Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain. J Neurophysiol 92(2):1088–1104

    Article  PubMed  Google Scholar 

  • Bee MA, Klump GM (2005) Auditory stream segregation in the songbird forebrain: effects of time intervals on responses to interleaved tone sequences. Brain Behav Evol 66(3):197–214

    Article  PubMed  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122(3):235–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee MA, Riemersma KK (2008) Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Anim Behav 76(3):831–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee MA, Micheyl C, Oxenham AJ, Klump GM (2010) Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. J Comp Physiol A 196(8):543–557

    Article  Google Scholar 

  • Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp. 227–261

    Google Scholar 

  • Bennet-Clark HC (1995) Insect sound production: transduction mechanisms and impedance matching. Symp Soc Exp Biol 49:199–218

    CAS  PubMed  Google Scholar 

  • Bennet-Clark HC (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. J Exp Biol 202(Pt 23):3347–3357

    CAS  PubMed  Google Scholar 

  • Braaten RF, Hulse SH (1993) Perceptual organization of auditory temporal patterns in European starlings (Sturnus vulgaris). Percept Psychophys 54(5):567–578

    Article  CAS  PubMed  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Association, Sunderland

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89(2):244–249

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS, Rudnicky AI (1975) Auditory segregation: stream or streams? J Exp Psychol Hum Percept Perform 1(3):263–267

    Article  CAS  PubMed  Google Scholar 

  • Bresciani JP, Ernst MO, Drewing K, Bouyer G, Maury V, Kheddar A (2005) Feeling what you hear: auditory signals can modulate tactile tap perception. Exp Brain Res 162(2):172–180

    Article  PubMed  Google Scholar 

  • Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi-talker speech. Atten Percept Psychophys 77(5):1465–1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchanan BW (1993) Effects of enhanced lighting on the behaviour of nocturnal frogs. Anim Behav 45(5):893–899

    Article  Google Scholar 

  • Burke D, Everingham P, Rogers T, Hinton M, Hall-Aspland S (2001) Perceptual grouping in two visually reliant species: humans (Homo sapiens) and Australian sea lions (Neophoca cinerea). Perception 30(9):1093–1106

    Article  CAS  PubMed  Google Scholar 

  • Bushara KO, Grafman J, Hallett M (2001) Neural correlates of auditory–visual stimulus onset asynchrony detection. J Neurosci 21(1):300–304

    CAS  PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR (eds) Andvances in vertebrate neuroethology. Plenum Press, New York, pp. 701–703

    Chapter  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Cherry EC, Weary DM (1954) Some further experiments upon the recognition of speech, with one and with two ears. J Acoust Soc Am 26:554–559

    Article  Google Scholar 

  • Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340(6128):66–69

    Article  CAS  PubMed  Google Scholar 

  • Cummings ME, Bernal XE, Reynaga R, Rand AS, Ryan MJ (2008) Visual sensitivity to a conspicuous male cue varies by reproductive state in Physalaemus pustulosus females. J Exp Biol 211(8):1203–1210

    Article  PubMed  Google Scholar 

  • Cusack R, Carlyon RP (2004) Auditory stream segregation inside and outside the laboratory. In: Neuhoff J (ed) Ecological psychoacoustics. Elsevier, San Diego, pp. 15–48

    Google Scholar 

  • Dambach M, Gras A (1995) Bioacoustics of a miniature cricket, Cycloptiloides canariensis (Orthoptera: Gryllidae: Mogoplistinae). J Exp Biol 198(Pt 3):721–728

    CAS  PubMed  Google Scholar 

  • Darwin CJ (1997) Auditory grouping. Trends Cogn Sci 1(9):327–333

    Article  CAS  PubMed  Google Scholar 

  • Darwin CJ, Carlyon RP (1995) Auditory grouping. In: Moore BC (ed) Hearing. Academic, San Diego, pp. 387–424

    Chapter  Google Scholar 

  • Darwin CJ, Brungart DS, Simpson BD (2003) Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. J Acoust Soc Am 114(5):2913–2922

    Article  PubMed  Google Scholar 

  • Dixon NF, Spitz L (1980) The detection of auditory visual desynchrony. Perception 9(6):719–721

    Article  CAS  PubMed  Google Scholar 

  • Dooling RJ, Hulse SH (1989) The comparative psychology of audition: perceiving complex sounds. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nat Neurosci 5(10):934–936

    Article  CAS  PubMed  Google Scholar 

  • Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61(2):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias DO, Hebets EA, Hoy RR (2006) Female preference for complex/novel signals in a spider. Behav Ecol 17(5):765–771

    Article  Google Scholar 

  • Endepols H, Walkowiak W (2000) Integration of ascending and descending inputs in the auditory midbrain of anurans. J Comp Physiol A 186(12):1119–1133

    Article  PubMed  Google Scholar 

  • Farris HE and Ryan MJ (2011) Relative comparisons of call parameters enable auditory grouping in frogs. Nat Commun. doi:10.1038/NCOMMS1417

  • Farris HE, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in túngara frogs: evidence for auditory grouping. Brain Behav Evol 60(3):181–188

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2005) The effects of time, space and spectrum on auditory grouping in túngara frogs. J Comp Physiol A 191(12):1173–1183

    Article  CAS  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophsyics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Fay RR (2008) Sound source perception and stream segregation in nonhuman vertebrate animals. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp. 307–323

    Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol 51:699–725

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp. 323–350

    Google Scholar 

  • Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440(7082):333–336

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2001) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res 151(1–2):167–187

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116(3):1656–1670

    Article  PubMed  Google Scholar 

  • Forester DC, Czarnowsky R (1985) Sexual selection in the spring peeper, Hyla crucifer (Amphibia, Anura): role of the advertisement call. Behaviour 92(1):112–127

    Article  Google Scholar 

  • Freyman RL, Helfer KS, McCall DD, Clifton RK (1999) The role of perceived spatial separation in the unmasking of speech. J Acoust Soc Am 106(6):3578–3588

    Article  CAS  PubMed  Google Scholar 

  • Freyman RL, Balakrishnan U, Helfer KS (2001) Spatial release from informational masking in speech recognition. J Acoust Soc Am 109(5 Pt 1):2112–2122

    Article  CAS  PubMed  Google Scholar 

  • Gans C (1973) Sound production in the Salientia: mechanism and evolution of the emitter. Am Zool 13:1179–1194

    Article  Google Scholar 

  • Gaub S, Ehret G (2005) Grouping in auditory temporal perception and vocal production is mutually adapted: the case of wriggling calls of mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12):1131–1135

    Article  PubMed  Google Scholar 

  • Gerhardt HC (1994) Reproductive character displacement of female mate choice in the grey treefrog. Anim Behav 47(4):959–969

    Article  Google Scholar 

  • Gerhardt HC (2001) Acoustic communication in two groups of closely related treefrogs. Adv Study Behav 30:99–167

    Article  Google Scholar 

  • Gerhardt HC, Bee MA (2007) Recognition and localization of acoustic signals. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians, Springer handbook of auditory research, vol 28. Springer, New York, pp. 113–146

    Chapter  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago, Chicago

    Google Scholar 

  • Grafe TU (1996) The function of call alternation in the African reed frog (Hyperolius marmoratus): precise call timing prevents auditory masking. Behav Ecol Sociobiol 38(3):149–158

    Article  Google Scholar 

  • Gridi-Papp M, Rand AS, Ryan MJ (2006) Animal communication: complex call production in the túngara frog. Nature 441(7089):38

    Article  CAS  PubMed  Google Scholar 

  • Gu JJ, Montealegre Z, Robert D, Engel MS, Qiao GX, Ren D (2012) Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proc Natl Acad Sci USA 109(10):3868–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfwerk W, Page RA, Taylor RC, Wilson PS, Ryan MJ (2014) Crossmodal comparisons of signal components allow for relative-distance assessment. Curr Biol 24(15):1751–1755

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9:155–184

    Article  Google Scholar 

  • Hawley ML, Litovsky RY, Culling JF (2004) The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. J Acoust Soc Am 115(2):833–843

    Article  PubMed  Google Scholar 

  • Hebets EA (2008) Seismic signal dominance in the multimodal courtship display of the wolf spider Schizocosa stridulans Stratton 1991. Behav Ecol 19(6):1250–1257

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebets EA and Rundus A (2011) Chemical communication in a multimodal context. Chemical Communication in Crustaceans. Springer, pp 335–354

    Google Scholar 

  • Henson RA (1977) Neurological aspects of musical experience. In: Henson RA (ed) Music and the brain: studies in the neurology of music. Charles C Thomas, Springfield

    Google Scholar 

  • Herberstein ME, Wignall AE, Hebets EA, Schneider JM (2014) Dangerous mating systems: signal complexity, signal content and neural capacity in spiders. Neurosci Biobehav Rev 46(Pt 4):509–518

    Article  PubMed  Google Scholar 

  • Higham JP, Hebets EA (2013) An introduction to multimodal communication. Behav Ecol Sociobiol 67(9):1381–1388

    Article  Google Scholar 

  • Hillery CM (1984) Seasonality of two midbrain auditory responses in the treefrog, Hyla chrysoscelis. Copeia 1984(4):844–852

    Article  Google Scholar 

  • Hirschmann W, Hödl W (2006) Visual signaling in Phrynobatrachus krefftii boulenger, 1909 (Anura: Ranidae). Herpetologica 62(1):18–27

    Article  Google Scholar 

  • Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004) Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24(50):11264–11272

    Article  CAS  PubMed  Google Scholar 

  • Hoke KL, Ryan MJ, Wilczynski W (2005) Social cues shift functional connectivity in the hypothalamus. Proc Natl Acad Sci USA 102(30):10712–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoke KL, Ryan MJ, Wilczynski W (2007) Integration of sensory and motor processing underlying social behaviour in túngara frogs. Proc Biol Sci 274(1610):641–649

    Article  CAS  PubMed  Google Scholar 

  • Hotting K, Roder B (2004) Hearing cheats touch, but less in congenitally blind than in sighted individuals. Psychol Sci 15(1):60–64

    Article  PubMed  Google Scholar 

  • Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, London

    Google Scholar 

  • Hulse SH (2002) Auditory scene analysis in animal communication. In: Slater P, Rosenblatt J, Snowdon C, Roper T (eds) Advances in the study of behavior, vol 31. Academic, New York, pp. 163–200

    Google Scholar 

  • Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Klump G (2005) How does the hearing system perform auditory scene analysis? In: van Hemmen JL, Sejnowski TJ (eds) Problems in systems neuroscience. Oxford University Press, New York, pp. 303–321

    Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2(9):1177–1194

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1989) Vision calibrates sound localization in developing barn owls. J Neurosci 9(9):3306–3313

    CAS  PubMed  Google Scholar 

  • Kozak EC, Uetz GW (2016) Cross-modal integration of multimodal courtship signals in a wolf spider. Anim Cogn. doi:10.1007/s10071-016-1025-y

    Google Scholar 

  • Kurylo DD, Van NJ, Knepper B (1997) Characteristics of perceptual grouping in rats. J Comp Psychol 111(2):126–134

    Article  CAS  PubMed  Google Scholar 

  • Laird KL, Clements P, Hunter KL, Taylor RC (2016) Multimodal signaling improves mating success in the green tree frog (Hyla cinerea), but may not help small males. Behav Ecol Sociobiol 70:1517–1525

    Article  Google Scholar 

  • Larson KA (2004) Advertisement call complexity in Northern Leopard Frogs, Rana pipiens. Copeia 3:676–682

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214(1):113–121

    Article  PubMed  Google Scholar 

  • Lindquist ED, Hetherington TE (1998) Semaphoring in an earless frog: the origin of a novel visual signal. Anim Cogn 1(2):83–87

    Article  CAS  PubMed  Google Scholar 

  • Lombardo SR, Mackey E, Tang L, Blumstein DT (2008) Multimodal communciation and spatial binding in pied currawongs (Strepera graculina). Anim Cogn 11(4):675–682

    Article  PubMed  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): perceptual segregation of tone sequences. J Acoust Soc Am 103(6):3581–3587

    Article  CAS  PubMed  Google Scholar 

  • Martin WF (1971) Mecanisms of sound production in toads of the genus Bufo: passive elements. J Exp Zool 176:273–294

    Article  CAS  PubMed  Google Scholar 

  • Maruska KP, Ung US, Fernald RD (2012) The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance. PLoS One 7(5):e37612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard Smith J, Harper DGC (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • McGurk H, Macdonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748

    Article  CAS  PubMed  Google Scholar 

  • Mellinger DK, Mont-Reynaud BM (1996) Scene analysis. In: Popper AN, Fay RR (eds) Auditory computation. Springer, Berlin, pp. 271–331

    Chapter  Google Scholar 

  • Micheyl C, Shamma S, Elhilali M, Oxenham AJ (2010). Sequential and simultaneous auditory grouping measured with synchrony detection. In: EA Lopez-Poveda, AR Palmer, R Meddis, eds The neurophysiological bases of auditory perception, Springer, New York, pp. 489-496

    Google Scholar 

  • Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22(5):637–638

    Article  Google Scholar 

  • Moore BCJ (2012) An introduction to the psychology of hearing, 6th edn. Emeral Group, Bingley

    Google Scholar 

  • Moore BCJ, Gockel H (2002) Factors influencing sequential stream segregation. Acta Acust United Ac 88(3):320–333

    Google Scholar 

  • Moore BC, Gockel HE (2012) Properties of auditory stream formation. Philos Trans R Soc Lond Ser B Biol Sci 367(1591):919–931

    Article  Google Scholar 

  • Mudry KM, Capranica RR (1987a) Correlation between auditory evoked responses in the thalamus and species-specific call characteristics. I. Rana catesbeiana (Anura: Ranidae). J Comp Physiol A 160(4):477–489

    Article  CAS  PubMed  Google Scholar 

  • Mudry KM, Capranica RR (1987b) Correlation between auditory thalamic area evoked responses and species-specific call characteristics. II. H. Hyla cinerea (Anura: Hylidae). J Comp Physiol A 161(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Munoz NE and Blumstein DT (2012) Multisensory perception in uncertain environments. Behav Ecol:arr220

    Google Scholar 

  • Naatanen R, Alho K (1995) Mismatch negativity – a unique measure of sensory processing in audition. Int J Neurosci 80(1–4):317–337

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis. Proc Natl Acad Sci 100(2):577–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102(7):2425–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiworth JJ, Whillock KM, Kim SH, Greenberg JR, Jones KB, Patel AR, Steefel-Moore DL, Shaw AJ, Rupert DD, Gauer JL, Kudura AG (2014) Gestalt principle use in college students, children with autism, toddlers (Homo sapiens), and cotton top tamarins (Saguinus oedipus). J Comp Psychol 128(2):188–198

    Article  PubMed  Google Scholar 

  • Nityananda V, Bee MA (2011) Finding your mate at a cocktail party: frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses. PLoS One 6(6):e21191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification task by gray treefrogs. Hear Res 285(1):86–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Partan SR, Larco CP, Owens MJ (2009) Wild tree squirrels respond with multisensory enhancement to conspecific robot alarm behaviour. Anim Behav 77(5):1127–1135

    Article  Google Scholar 

  • Pollack GS, Huber F, Weber T (1984) Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J Comp Physiol 154(1):13–26

    Article  Google Scholar 

  • Ponnath A, Farris HE (2010) Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(9):613–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnath A, Farris HE (2014) Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front Neural Circuits 8:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponnath A, Hoke KL, Farris HE (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199(4):295–313

    Article  Google Scholar 

  • Popper AN, Fay RR (1997) Evolution of the ear and hearing: issues and questions. Brain Behav Evol 50(4):213–221

    Article  CAS  PubMed  Google Scholar 

  • Preininger D, Boeckle M, Freudmann A, Starnberger I, Sztatecsny M, Hödl W (2013a) Multimodal signaling in the Small Torrent Frog (Micrixalus saxicola) in a complex acoustic environment. Behav Ecol Sociobiol 67(9):1449–1456

    Article  PubMed  PubMed Central  Google Scholar 

  • Preininger D, Boeckle M, Sztatecsny M, Hödl W (2013b) Divergent receiver responses to components of multimodal signals in two foot-flagging frog species. PLoS One 8(1):e55367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pressnitzer D, Sayles M, Micheyl C, Winter IM (2008) Perceptual organization of sound begins in the auditory periphery. Curr Biol 18(15):1124–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert MS, Galante H, Höbel G (2014) Female gray treefrogs, Hyla versicolor, are responsive to visual stimuli but unselective of stimulus characteristics. J Exp Biol 217(18):3254–3262

    Article  PubMed  Google Scholar 

  • Reichert MS, Symes LB, Höbel G (2016) Lighting up sound preferences: cross-modal influences on the precedence effect in treefrogs. Anim Behav 119:151–159

    Article  Google Scholar 

  • Rock I, Brosgole L (1964) Grouping based on phenomenal proximity. J Exp Psychol 67(6):531–538

    Article  CAS  PubMed  Google Scholar 

  • Rock I, Palmer S (1990) The legacy of Gestalt psychology. Sci Am 263(6):84–90

    Article  CAS  PubMed  Google Scholar 

  • Rose MM, Moore BC (2000) Effects of frequency and level on auditory stream segregation. J Acoust Soc Am 108(3 Pt 1):1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Rose GJ, Leary CJ, Edwards CJ (2011) Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A 197(1):97–108

    Article  Google Scholar 

  • Rosenthal GG, Rand AS, Ryan MJ (2004) The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. Anim Behav 68(1):55–58

    Article  Google Scholar 

  • Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci 104(36):14372–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MJ (1985) The Túngara frog, a study in sexual selection and communication. University of Chicago Press, Chicago

    Google Scholar 

  • Ryan MJ, Drewes RC (1990) Vocal morphology of the Physalaemus-pustulosus species group (Leptodactylidae) – morphological response to sexual selection for complex calls. Biol J Linn Soc Lond 40(1):37–52

    Article  Google Scholar 

  • Ryan MJ, Rand AS (1990) The sensory basis of sexual selection for complex calls in the Túngara frog, Physalaemus pustulosus (Sexual selection for sensory exploitation). Evolution 44(2):305–314

    Article  Google Scholar 

  • Ryan MJ, Fox JH, Wilczynski W, Rand AS (1990) Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343(6253):66–67

    Article  CAS  PubMed  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol 155(2):171–185

    Article  Google Scholar 

  • Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A 200(3):221–238

    Article  Google Scholar 

  • Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray tree frog, Hyla versicolor. Audit Neurosci 1:195–206

    Google Scholar 

  • Shaw KL, Herlihy DP (2000) Acoustic preference functions and song variability in the Hawaiian cricket Laupala cerasina. Proc Biol Sci 267(1443):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons DD, Meenderink SWF, Vassilakis PN (2007) Anatomy, physiology, and function of auditory end-organs in the frog inner ear. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp. 184–220

    Google Scholar 

  • Smith BP, Williams CR, Tyler MJ, Williams BD (2004) A survey of frog odorous secretions, their possible functions and phylogenetic significance. Appl Herpetol 2(1):47–82

    Article  Google Scholar 

  • Sobel EC, Tank DW (1994) In-vivo Ca2+ dynamics in a cricket auditory neuron – an example of chemical computation. Science 263(5148):823–826

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi G, De LC, Castelli S (2004) Detection of grouped and ungrouped parts in visual patterns by tufted capuchin monkeys (Cebus apella) and humans (Homo sapiens). J Comp Psychol 118(3):297–308

    Article  PubMed  Google Scholar 

  • Spinozzi G, De LC, Truppa V, Castorina G (2009) The relative use of proximity, shape similarity, and orientation as visual perceptual grouping cues in tufted capuchin monkeys (Cebus apella) and humans (Homo sapiens). J Comp Psychol 123(1):56–68

    Article  PubMed  Google Scholar 

  • Starnberger I, Poth D, Peram PS, Schulz S, Vences M, Knudsen J, Barej MF, Rodel M-O, Lzl M, Odl W (2013) Take time to smell the frogs: vocal sac glands of reed frogs (Anura: Hyperoliidae) contain species-specific chemical cocktails. Biol J Linn Soc Lond 110(4):828–838

    Article  PubMed Central  Google Scholar 

  • Starnberger I, Preininger D, Hödl W (2014a) From uni-to multimodality: towards an integrative view on anuran communication. J Comp Physiol A 200(9):777–787

    Article  Google Scholar 

  • Starnberger I, Preininger D, Hödl W (2014b) The anuran vocal sac: a tool for multimodal signalling. Anim Behav 97:281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein BE (2012) The new handbook of multisensory processing. MIT Press, Cambridge

    Google Scholar 

  • Stein BE, Meredith A (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stevenson R (2012) Multisensory interactions in flavor perception. In: Stein BE (ed) The new handbook of multisensory processing. MIT Press, Cambridge

    Google Scholar 

  • Sztatecsny M, Preininger D, Freudmann A, Loretto MC, Maier F, Hödl W (2012) Don't get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behav Ecol Sociobiol 66(12):1587–1593

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor RC, Ryan MJ (2013) Interactions of multisensory components perceptually rescue túngara frog mating signals. Science 341(6143):273–274

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Buchanan BW, Doherty JL (2007) Sexual selection in the squirrel treefrog Hyla squirella: the role of multimodal cue assessment in female choice. Anim Behav 74(6):1753–1763

    Article  Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2008) Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Anim Behav 76(3):1089–1097

    Article  Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2011) Multimodal signal variation in space and time: how important is matching a signal with its signaler? J Exp Biol 214(5):815–820

    Article  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453

    Article  CAS  PubMed  Google Scholar 

  • Uy JA, Safran RJ (2013) Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behav Ecol Sociobiol 67(9):1499–1511

    Article  Google Scholar 

  • van Noorden LP (1977) Minimun differences of level and frequency for perceptual fission of tone sequences ABAB. J Acoust Soc Am 61(4):1041–1045

    Article  PubMed  Google Scholar 

  • Vélez A, Bee MA (2011) Dip listening and the cocktail party problem in grey treefrogs: signal recognition in temporally fluctuating noise. Anim Behav 82(6):1319–1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Vélez A, Hobel G, Gordon NM, Bee MA (2012) Dip listening or modulation masking? Call recognition by green treefrogs (Hyla cinerea) in temporally fluctuating noise. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(12):891–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldman B, Bishop PJ (2004) Chemical communication in an archaic anuran amphibian. Behav Ecol 15(1):88–93

    Article  Google Scholar 

  • Walker TJ (1957) Specificity in the response of female tree crickets (Orthoptera: Gryllidae: Oecanthinae) to calling songs of the males. Ann Entomol Soc Am 50:626–636

    Article  Google Scholar 

  • Walker TJ (1962) Factors responsible for intraspecific variation in calling songs of crickets. Evolution 16(4):407–428

    Article  Google Scholar 

  • Walker TJ (1974) Character displacement and acoustic insects. Am Zool 14(4):1137–1150

    Article  Google Scholar 

  • Wang D, Brown GJ (2006) Comutational auditory scene analysis: principles, algorithms, and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Weber T, Thorson J (1988) Auditory-behavior of the cricket. 4. Interaction of direction of tracking with perceived temporal pattern in split-song paradigms. J Comp Physiol A 163(1):13–22

    Article  Google Scholar 

  • Wells KD (1980) Social behavior and communication of a dendrobatid frog (Colostethus trinitatis). Herpetologica 36:189–199

    Google Scholar 

  • Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96(2):730–745

    Article  PubMed  Google Scholar 

  • Yost WA, Sheft S (1993) Auditory perception. In: Yost WA, Popper AN, Fay RR (eds) Human psychophysics. Springer, New York, pp. 193–236

    Chapter  Google Scholar 

  • Yost WA, Popper AN, Fay RR (2008) Auditory perception of sound sources. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank Mark Bee and Kim Hunter for helpful discussions. We are grateful to Mike Ryan for his insight into mate choice behavior and for including us in “Team Túngara.” Iris Starnberger generously provided the photo of the calling African reed frog. Helpful resources were provided by N. Bazan, S. McClugage (LSUHSC), and K. Olmstead (SU), and funding was provided by the Smithsonian Tropical Research Institute and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamilton E. Farris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Farris, H.E., Taylor, R.C. (2016). Mate Searching Animals as Model Systems for Understanding Perceptual Grouping. In: Bee, M., Miller, C. (eds) Psychological Mechanisms in Animal Communication. Animal Signals and Communication, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-48690-1_4

Download citation

Publish with us

Policies and ethics