In Silico Approaches Toward Combating Antibiotic Resistance

  • Rahul Shubhra Mandal
  • Santasabuj Das


Drug-resistant infections have become a major concern to human health worldwide, and the number of resistant bacteria is increasing each day. The conventional drug designing approaches are time-consuming and involve huge investment in addition to frequent failures at the clinical trial phase due to unwanted side effects. Because of these reasons, pharmaceutical companies are losing interest to invest in antibiotic research. Modern computational approaches have made the early process of drug target identification and lead compound optimization a lot easier. The anti-virulence strategy of target identification has proved to be safer as compared to the bactericidal or bacteriostatic drugs, since the chance of resistance development would be less due to non-interference with normal bacterial growth and survival. Identification of druggable targets and the use of chemical compound databases and computational tools made it possible to screen millions of molecules within a reasonably short time, taking care of individual ADMET properties. The early detection of potential drug targets and lead compounds is highly desirous in antibiotic research as it demands less time and cost. Therefore, a healthy collaboration between computational and experimental researchers is the future of novel antibiotic discovery.


Target Identification Pharmacophore Model Potential Drug Target Query Molecule Drug Target Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Indian Council of Medical Research (ICMR) and the government of India for providing necessary funds and facilities. RSM thanks ICMR for funding support (IRIS ID: 2013–1551G).


  1. Anitha P, Anbarasu A, Ramaiah S (2014) Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii. Comput Biol Med 48:17–27. doi: 10.1016/j.compbiomed.2014.02.009 CrossRefPubMedGoogle Scholar
  2. Armstrong GD, Rowe PC, Goodyer P, Orrbine E, Klassen TP, Wells G, MacKenzie A, Lior H, Blanchard C, Auclair F, Thompson B, Rafter DJ, McLaine PN (1995) A phase I study of chemically synthesized verotoxin (Shiga-like toxin) Pk-trisaccharide receptors attached to chromosorb for preventing hemolytic-uremic syndrome. J Infect Dis 171:1042–1045. doi: 10.1093/infdis/171.4.1042 CrossRefPubMedGoogle Scholar
  3. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2. doi: 10.1186/1471-2105-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2:3204–3218. doi: 10.1039/B409813G CrossRefPubMedGoogle Scholar
  5. Bohm HJ (1992a) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefPubMedGoogle Scholar
  6. Bohm HJ (1992b) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6:593–606CrossRefPubMedGoogle Scholar
  7. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D (2013) 10 x ‘20 Progress--development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56:1685–1694. doi: 10.1093/cid/cit152 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brazas MD, Hancock RE (2005) Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today 10:1245–1252. doi: 10.1016/S1359-6446(05)03566-X CrossRefPubMedGoogle Scholar
  9. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi: 10.1002/jcc.21287 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chan PF, Macarron R, Payne DJ, Zalacain M, Holmes DJ (2002) Novel antibacterials: a genomics approach to drug discovery. Curr Drug Targets Infect Dis 2:291–308CrossRefGoogle Scholar
  11. Chanumolu SK, Rout C, Chauhan RS (2012) UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria. PloS One 7:e32833. doi: 10.1371/journal.pone.0032833 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen X, Ung CY, Chen Y (2003) Can an in silico drug-target search method be used to probe potential mechanisms of medicinal plant ingredients? Natl Prod Rep 20:432–444. doi: 10.1039/B303745B CrossRefGoogle Scholar
  13. Chen X, Zhou H, Liu YB, Wang JF, Li H, Ung CY, Han LY, Cao ZW, Chen YZ (2006) Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br J Pharmacol 149:1092–1103. doi: 10.1038/sj.bjp.0706945 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chung BK, Dick T, Lee DY (2013) In silico analyses for the discovery of tuberculosis drug targets. J Antimicrob Chemother 68:2701–2709. doi: 10.1093/jac/dkt273 CrossRefPubMedGoogle Scholar
  15. Davies SC, Fowler T, Watson J, Livermore DM, Walker D (2013) Annual report of the Chief Medical Officer: infection and the rise of antimicrobial resistance. Lancet 381:1606–1609. doi: 10.1016/S0140-6736(13)60604-2 CrossRefPubMedGoogle Scholar
  16. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3. doi: 10.1186/gb-2003-4-5-p3 CrossRefPubMedGoogle Scholar
  17. Domagk G (1935) Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch Med Wochenschr 61:250. doi: 10.1055/s-0028-1129486 CrossRefGoogle Scholar
  18. Durrant JD, Amaro RE, McCammon JA (2009) AutoGrow: a novel algorithm for protein inhibitor design. Chem Biol Drug Des 73:168–178. doi: 10.1111/j.1747-0285.2008.00761.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Durrant JD, Lindert S, McCammon JA (2013) AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. J Mol Graph Model 44:104–112. doi: 10.1016/j.jmgm.2013.05.006 CrossRefPubMedGoogle Scholar
  20. Ehrlich P, Hata S (1910) Die Experimentelle Chemotherapie der Spirilosen. Julius Springer, BerlinCrossRefGoogle Scholar
  21. Felise HB, Nguyen HV, Pfuetzner RA, Barry KC, Jackson SR, Blanc MP, Bronstein PA, Kline T, Miller SI (2008) An inhibitor of gram-negative bacterial virulence protein secretion. Cell Host Microbe 4:325–336. doi: 10.1016/j.chom.2008.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Field D, Feil EJ, Wilson GA (2005) Databases and software for the comparison of prokaryotic genomes. Microbiology 151:2125–2132. doi: 10.1099/mic.0.28006-0 CrossRefPubMedGoogle Scholar
  23. Fischer HP (2001) The impact of expression profiling technologies on antimicrobial target identification and validation. Drug Discov Today 6:1149–1150. doi: 10.1016/S1359-6446(01)02047-5 CrossRefPubMedGoogle Scholar
  24. Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Org 79:780–790. doi: 10.1590/S0042-96862001000800017 PubMedPubMedCentralGoogle Scholar
  25. Frecer V, Ho B, Ding JL (2004) De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother 48:3349–3357. doi: 10.1128/AAC.48.9.3349-3357.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi: 10.1021/jm0306430 CrossRefPubMedGoogle Scholar
  27. Fritz B, Raczniak GA (2002) Bacterial genomics: potential for antimicrobial drug discovery. BioDrugs 16:331–337CrossRefPubMedGoogle Scholar
  28. Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:104. doi: 10.1186/1471-2105-9-104 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. doi: 10.1093/nar/gkr777 CrossRefPubMedGoogle Scholar
  30. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2015) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. doi: 10.1093/nar/gkv1072 Google Scholar
  31. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173. doi: 10.1002/elps.200900140 CrossRefPubMedGoogle Scholar
  32. Hampton T (2013) Report reveals scope of US antibiotic resistance threat. JAMA 310(16):1661–1663. doi: 10.1001/jama.2013.280695 CrossRefPubMedGoogle Scholar
  33. Han LY, Zheng CJ, Xie B, Jia J, Ma XH, Zhu F, Lin HH, Chen X, Chen YZ (2007) Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov Today 12:304–313. doi: 10.1016/j.drudis.2007.02.015 CrossRefPubMedGoogle Scholar
  34. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. doi: 10.1021/ct700301q CrossRefPubMedGoogle Scholar
  35. Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q, Winkler DF, Hancock RE (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13:1101–1107. doi: 10.1016/j.chembiol.2006.08.014 CrossRefPubMedGoogle Scholar
  36. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183. doi: 10.1186/gb-2007-8-9-r183 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Prot 4:44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar
  38. Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–674. doi: 10.1126/science.1116739 CrossRefPubMedGoogle Scholar
  39. Jabes D (2011) The antibiotic R&D pipeline: an update. Curr Opin Microbiol 14:564–569. doi: 10.1016/j.mib.2011.08.002 CrossRefPubMedGoogle Scholar
  40. Jensen NH, Roth BL (2008) Massively parallel screening of the receptorome. Comb Chem High Throughput Screen 11:420–426. doi: 10.2174/138620708784911483 CrossRefPubMedGoogle Scholar
  41. Ji ZL, Wang Y, Yu L, Han LY, Zheng CJ, Chen YZ (2006) In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett 164:104–112. doi: 10.1016/j.toxlet.2005.11.017 CrossRefPubMedGoogle Scholar
  42. Kauppi AM, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M (2003) Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 10:241–249. doi: 10.1016/S1074-5521(03)00046-2 CrossRefPubMedGoogle Scholar
  43. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Prot 10:845–858. doi: 10.1038/nprot.2015.053 CrossRefGoogle Scholar
  44. Kline T, Felise HB, Barry KC, Jackson SR, Nguyen HV, Miller SI (2008) Substituted 2-imino-5-arylidenethiazolidin-4-one inhibitors of bacterial type III secretion. J Med Chem 51:7065–7074. doi: 10.1021/jm8004515 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554–2574. doi: 10.1016/j.jprot.2011.05.011 CrossRefPubMedGoogle Scholar
  46. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acid Res 42:D1091–D1097. doi: 10.1093/nar/gkt1068 CrossRefPubMedGoogle Scholar
  47. Lesic B, Lepine F, Deziel E, Zhang J, Zhang Q, Padfield K, Castonguay MH, Milot S, Stachel S, Tzika AA, Tompkins RG, Rahme LG (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239. doi: 10.1371/journal.ppat.0030126 CrossRefPubMedGoogle Scholar
  48. Li Q, Lai L (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics 8:353. doi: 10.1186/1471-2105-8-353 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acid Res 34(Web Server issue):W219–W224. doi: 10.1093/nar/gkl114 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acid Res 38(Web Server issue):W609–W614. doi: 10.1093/nar/gkq300 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mandal S, Moudgil M, Mandal SK (2009) Rational drug design. Eur J Pharmacol 625:90–100. doi: 10.1016/j.ejphar.2009.06.065 CrossRefPubMedGoogle Scholar
  52. Moellering RC Jr (2011) Discovering new antimicrobial agents. Int J Antimicrob Agents 37:2–9. doi: 10.1016/j.ijantimicag.2010.08.018 CrossRefPubMedGoogle Scholar
  53. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 3:2785–2791. doi: 10.1002/jcc.21256 CrossRefGoogle Scholar
  54. Muschiol S, Bailey L, Gylfe A, Sundin C, Hultenby K, Bergstrom S, Elofsson M, Wolf-Watz H, Normark S, Henriques-Normark B (2006) A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 103:14566–14571. doi: 10.1073/pnas.0606412103 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles. Nucleic Acid Res 38(Web Server issue):W576–W581. doi: 10.1093/nar/gkq535 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790. doi: 10.1126/science.293.5536.1786 CrossRefPubMedGoogle Scholar
  57. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201 CrossRefPubMedGoogle Scholar
  58. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acid Res 42(Database issue):D336–D346. doi: 10.1093/nar/gkh095 CrossRefPubMedGoogle Scholar
  59. Power E (2006) Impact of antibiotic restrictions: the pharmaceutical perspective. Clin Microbiol Infect 12(Suppl 5):25–34. doi: 10.1111/j.1469-0691.2006.01528.x CrossRefPubMedGoogle Scholar
  60. Prado-Prado FJ, Garcia-Mera X, Gonzalez-Diaz H (2010) Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg Med Chem 18:2225–2231. doi: 10.1016/j.bmc.2010.01.068 CrossRefPubMedGoogle Scholar
  61. Projan SJ (2003) Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430. doi: 10.1016/j.mib.2003.08.003 CrossRefPubMedGoogle Scholar
  62. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128. doi: 10.1038/nrd3013 CrossRefPubMedGoogle Scholar
  63. Rasko DA, Moreira CG, de Li R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080. doi: 10.1126/science.1160354 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rice LB (2008) The Maxwell Finland Lecture: for the duration-rational antibiotic administration in an era of antimicrobial resistance and clostridium difficile. Clin Infect Dis 46:491–496. doi: 10.1086/526535 CrossRefPubMedGoogle Scholar
  65. Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610. doi: 10.1016/S1359-6446(05)03666-4 CrossRefPubMedGoogle Scholar
  66. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109. doi: 10.1128/CMR.00030-10 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sipahi OR (2008) Effects of antibiotic resistance on industrial antibiotic R&D. Expert Rev Anti Infect Ther 6:523–539CrossRefPubMedGoogle Scholar
  69. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395. doi: 10.1124/pr.112.007336 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Speck-Planche A, Cordeiro MN (2015) A general ANN-based multitasking model for the discovery of potent and safer antibacterial agents. Methods Mol Biol 1260:45–64. doi: 10.1007/978-1-4939-2239-0_4 CrossRefPubMedGoogle Scholar
  71. Speck-Planche A, Kleandrova VV, Cordeiro MN (2013) Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem 21:2727–2732. doi: 10.1016/j.bmc.2013.03.015 CrossRefPubMedGoogle Scholar
  72. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164. doi: 10.1086/524891 CrossRefPubMedGoogle Scholar
  73. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acid Res 43:D447–D452. doi: 10.1093/nar/gku1003 CrossRefPubMedGoogle Scholar
  74. Tang CM, Moxon ER (2001) The impact of microbial genomics on antimicrobial drug development. Annu Rev Genomics Hum Genet 2:259–269. doi: 10.1146/annurev.genom.2.1.259 CrossRefPubMedGoogle Scholar
  75. Tenorio-Borroto E, Penuelas Rivas CG, Vasquez Chagoyan JC, Castanedo N, Prado-Prado FJ, Garcia-Mera X, Gonzalez-Diaz H (2012) ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorg Med Chem 20:6181–6194. doi: 10.1016/j.bmc.2012.07.020 CrossRefPubMedGoogle Scholar
  76. Trachtman H, Cnaan A, Christen E, Gibbs K, Zhao S, Acheson DW, Weiss R, Kaskel FJ, Spitzer A, Hirschman GH, Investigators of the HUSSPMCT (2003) Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA 290:1337–1344. doi: 10.1001/jama.290 CrossRefPubMedGoogle Scholar
  77. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi: 10.1002/jcc.21334 PubMedPubMedCentralGoogle Scholar
  78. Veenendaal AK, Sundin C, Blocker AJ (2009) Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 191:563–570. doi: 10.1128/JB.01004-08 CrossRefPubMedGoogle Scholar
  79. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623. doi: 10.1002/prot.10465 CrossRefPubMedGoogle Scholar
  80. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH (2012) PubChem’s BioAssay Database. Nucleic Acid Res 40(Database issue):D400–D412. doi: 10.1093/nar/gkr1132 CrossRefPubMedGoogle Scholar
  81. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Prot Bioinfo 47:5.6.1–5.6.32. doi: 10.1002/0471250953.bi0506s47 CrossRefGoogle Scholar
  82. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acid Res 35:3375–3382. doi: 10.1093/nar/gkm251 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Info Model 51:1083–1091. doi: 10.1021/ci100350u CrossRefGoogle Scholar
  84. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi: 10.1186/1471-2105-9-40 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26:198–212. doi: 10.1016/j.jmgm.2006.06.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Biomedical Informatics CenterNational Institute of Cholera and Enteric DiseasesKolkataIndia

Personalised recommendations