Perturbed Signaling and Role of Posttranslational Modifications in Cancer Drug Resistance

  • Suruchi Aggarwal
  • Manu Kandpal
  • Shailendra Asthana
  • Amit Kumar Yadav
Chapter

Abstract

Cancer is a complex disease in which erratic cellular signaling leads to uncontrolled growth and proliferation. Several drugs and therapies have been developed to control these signaling perturbations so as to kill the tumor cells. Despite these advances, cancer is a compounding global health problem made severe by the ever-increasing drug resistance. The number of new drugs approved is hopelessly outpaced by the instances of drug resistance and relapses. Posttranslational modifications (PTMs) are emerging as a hidden regulatory layer controlling metabolism and homeostasis. Drugs usually target PTMs to kill tumor cells. PTMs are also exploited by cancer cells to maintain their growth and survival by rewiring survival signaling pathways that can introduce drug resistance, both intrinsic and acquired. In this chapter, we discuss major known resistance mechanisms in cancer, exemplify how PTMs are involved in those, and attract the attention of drug discovery community toward this regulatory mechanism. A thorough understanding of the role of PTMs in these signaling changes can play a significant role in solving the drug resistance problem. We believe that combination therapies exploiting the PTMs may have a better chance of treating cancer and averting the intractable problems of drug resistance and cancer relapse.

References

  1. Andre F, Berrada N, Desmedt C (2010) Implication of tumor microenvironment in the resistance to chemotherapy in breast cancer patients. Curr Opin Oncol 22:547–551. doi:10.1097/CCO.0b013e32833fb384 PubMedCrossRefGoogle Scholar
  2. Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, Weinhage T, Menck K, Hupfeld T, Koch R, Trumper L, Wulf GG (2011) Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci USA 108:15336–15341. doi:10.1073/pnas.1102855108 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barouch-Bentov R, Sauer K (2011) Mechanisms of drug resistance in kinases. Expert Opin Investig Drugs 20:153–208. doi:10.1517/13543784.2011.546344 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. doi:10.1016/j.cell.2007.05.009 PubMedCrossRefGoogle Scholar
  5. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467. doi:10.1038/nature07963 PubMedCrossRefGoogle Scholar
  6. Bishop LA, Rahman D, Pappin DJ, Watt FM (1995) Identification of an 80kD protein associated with the alpha 3 beta 1 integrin as a proteolytic fragment of the alpha 3 subunit: studies with human keratinocytes. Cell Adhes Commun 3:243–255. doi:10.3109/15419069509081290 PubMedCrossRefGoogle Scholar
  7. Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint VC, Wiemann BZ, Ishwaran H, Ter Brugge PJ, Jonkers J, Slingerland J, Minn AJ (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513. doi:10.1016/j.cell.2014.09.051 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598. doi:10.1038/nrc3342 PubMedCrossRefGoogle Scholar
  9. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171. doi:10.1016/S0955-0674(03)00003-6 PubMedCrossRefGoogle Scholar
  10. Buonato JM, Lazzara MJ (2014) ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 74:309–319. doi:10.1158/0008-5472.CAN-12-4721 PubMedCrossRefGoogle Scholar
  11. Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic analysis of integrin adhesion complexes. Sci Signal 4:t2. doi:10.1126/scisignal.2001827 Google Scholar
  12. Chen Y, Sanchez Y (2004) Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst) 3:1025–1032. doi:10.1016/j.dnarep.2004.03.003 CrossRefGoogle Scholar
  13. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della MP, Menard S, Filipazzi P, Rivoltini L, Tagliabue E, Pupa SM (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227:658–667. doi:10.1002/jcp.22773 PubMedCrossRefGoogle Scholar
  14. Cortot AB, Janne PA (2014) Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 23:356–366. doi:10.1183/09059180.00004614 PubMedCrossRefGoogle Scholar
  15. Creixell P, Linding R (2012) Cells, shared memory and breaking the PTM code. Mol Syst Biol 8:598. doi:10.1038/msb.2012.33 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cunningham JJ, Gatenby RA, Brown JS (2011) Evolutionary dynamics in cancer therapy. Mol Pharm 8:2094–2100. doi:10.1021/mp2002279 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27. doi:10.1016/j.cell.2012.06.013 PubMedCrossRefGoogle Scholar
  18. Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54:716–727. doi:10.1016/j.molcel.2014.05.015 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20:426–430. doi:10.1016/S0968-0004(00)89093-3 PubMedCrossRefGoogle Scholar
  20. Farrell J, Kelly C, Rauch J, Kida K, Garcia-Munoz A, Monsefi N, Turriziani B, Doherty C, Mehta JP, Matallanas D, Simpson JC, Kolch W, von Kriegsheim A (2014) HGF induces epithelial-to-mesenchymal transition by modulating the mammalian hippo/MST2 and ISG15 pathways. J Proteome Res 13:2874–2886. doi:10.1021/pr5000285 PubMedCrossRefGoogle Scholar
  21. Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA (2010) Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet 6:e1000855. doi:10.1371/journal.pgen.1000855 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. doi:10.1002/ijc.25516 PubMedCrossRefGoogle Scholar
  23. Geske FJ, Nelson AC, Lieberman R, Strange R, Sun T, Gerschenson LE (2000) DNA repair is activated in early stages of p53-induced apoptosis. Cell Death Differ 7:393–401. doi:10.1038/sj.cdd.4400663 PubMedCrossRefGoogle Scholar
  24. Gillet JP, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596:47–76. doi:10.1007/978-1-60761-416-6_4 PubMedCrossRefGoogle Scholar
  25. Goldie JH (2001) Drug resistance in cancer: a perspective. Cancer Metastasis Rev 20:63–68PubMedCrossRefGoogle Scholar
  26. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. doi:10.1146/annurev.med.53.082901.103929 PubMedCrossRefGoogle Scholar
  27. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. doi:10.1038/nrc706 PubMedCrossRefGoogle Scholar
  28. Graves LM, Duncan JS, Whittle MC, Johnson GL (2013) The dynamic nature of the kinome. Biochem J 450:1–8. doi:10.1042/BJ20121456 PubMedCrossRefGoogle Scholar
  29. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP (2015) Targeting cancer with kinase inhi bitors. J Clin Invest 125:1780–1789. doi:10.1172/JCI76094 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9 PubMedCrossRefGoogle Scholar
  31. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  32. Hantschel O, Rix U, Superti-Furga G (2008) Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma 49:615–619. doi:10.1080/10428190801896103 PubMedCrossRefGoogle Scholar
  33. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435. doi:10.1038/nature08833 PubMedCrossRefGoogle Scholar
  34. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910 PubMedPubMedCentralCrossRefGoogle Scholar
  35. He C, Baba M, Klionsky DJ (2009) Double duty of Atg9 self-association in autophagosome bio genesis. Autophagy 5:385–387. doi:10.4161/auto.5.3.7699 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Henrique R, Oliveira AI, Costa VL, Baptista T, Martins AT, Morais A, Oliveira J, Jeronimo C (2013) Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genomics 14:898. doi:10.1186/1471-2164-14-898 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Holohan C, Van SS, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. doi:10.1038/nrc3599 PubMedCrossRefGoogle Scholar
  38. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6:1769–1792. doi:10.3390/cancers6031769 CrossRefGoogle Scholar
  39. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi:10.1126/science.1063127 PubMedCrossRefGoogle Scholar
  40. Karimi P, Shahrokni A, Ranjbar MR (2014) Implementation of proteomics for cancer research: past, present, and future. Asian Pac J Cancer Prev 15:2433–2438PubMedCrossRefGoogle Scholar
  41. Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011:1–13. doi:10.4061/2011/207691 CrossRefGoogle Scholar
  42. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4:120ra17. doi:10.1126/scitranslmed.3003316 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Katayama K, Noguchi K, Sugimoto Y (2014) Regulations of P-Glycoprotein/ABCB1/MDR1 in human cancer cells. New J Sci 2014:1–10. doi:10.1155/2014/476974 CrossRefGoogle Scholar
  44. Kellner S, Kikyo N (2010) Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 25:405–412PubMedPubMedCentralGoogle Scholar
  45. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28:1069–1078. doi:10.1038/nbt.1678 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kerr E, Holohan C, McLaughlin KM, Majkut J, Dolan S, Redmond K, Riley J, McLaughlin K, Stasik I, Crudden M, Van SS, Fenning C, O’Connor R, Kiely P, Sgobba M, Haigh D, Johnston PG, Longley DB (2012) Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ 19:1317–1327. doi:10.1038/cdd.2012.8 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kise K, Kinugasa-Katayama Y, Takakura N (2015) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev. doi:10.1016/j.addr.2015.08.005 PubMedGoogle Scholar
  48. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792. doi:10.1056/NEJMoa044238 PubMedCrossRefGoogle Scholar
  49. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163. doi:10.1016/j.cell.2007.10.035 PubMedCrossRefGoogle Scholar
  50. Kongara S, Karantza V (2012) The interplay between autophagy and ROS in tumorigenesis. Front Oncol 2:171. doi:10.3389/fonc.2012.00171 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kosaka T, Yamaki E, Mogi A, Kuwano H (2011) Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol 2011:165214. doi:10.1155/2011/165214 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Krebs DL, Hilton DJ (2000) SOCS: physiological suppressors of cytokine signaling. J Cell Sci 113:2813–2819PubMedGoogle Scholar
  53. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730. doi:10.1038/nm1263 PubMedCrossRefGoogle Scholar
  54. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5:1799–1810. doi:10.1074/mcp.R600009-MCP200 PubMedCrossRefGoogle Scholar
  55. Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8:121–132. doi:10.1038/nrc2297 PubMedCrossRefGoogle Scholar
  56. Li S, Iakoucheva LM, Mooney SD, Radivojac P (2010) Loss of post-translational modification sites in disease. Pac Symp Biocomput 2010:337–347. doi:10.1142/9789814295291_0036 Google Scholar
  57. Linn DE, Yang X, Sun F, Xie Y, Chen H, Jiang R, Chen H, Chumsri S, Burger AM, Qiu Y (2010) A role for OCT4 in tumor initiation of drug-resistant prostate cancer cells. Genes Cancer 1:908–916. doi:10.1177/1947601910388271 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Little SE, Popov S, Jury A, Bax DA, Doey L, Al-Sarraj S, Jurgensmeier JM, Jones C (2012) Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res 72:1614–1620. doi:10.1158/0008-5472.CAN-11-4069 PubMedCrossRefGoogle Scholar
  59. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Getz G, Golub TR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25:91–101. doi:10.1016/j.ccr.2013.12.015 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8:363–369. doi:10.1016/j.coph.2008.06.016 PubMedCrossRefGoogle Scholar
  61. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294. doi:10.1038/nature10760 PubMedCrossRefGoogle Scholar
  62. Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19:1381–1388. doi:10.1038/nm.3369 PubMedCrossRefGoogle Scholar
  63. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752. doi:10.1038/nrm2239 PubMedCrossRefGoogle Scholar
  64. Malet-Martino M, Martino R (2002) Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. Oncologist 7:288–323. doi:10.1634/theoncologist.7-4-288 PubMedCrossRefGoogle Scholar
  65. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934. doi:10.1126/science.1075762;298/5600/1912 PubMedCrossRefGoogle Scholar
  66. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315. doi:10.1007/s10555-012-9415-3 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Marsh DJ, Shah JS, Cole AJ (2014) Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets. Front Oncol 4:144. doi:10.3389/fonc.2014.00144 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295. doi:10.1158/1078-0432.CCR-07-2238 PubMedCrossRefGoogle Scholar
  69. Masuda S, Izpisua Belmonte JC (2013) The microenvironment and resistance to personalized cancer therapy. Nat Rev Clin Oncol 10:79. doi:10.1038/nrclinonc.2012.127-c1 CrossRefGoogle Scholar
  70. Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D, Dhople VM, Siam L, Pukrop T, Binder C, Klemm F (2015) Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol 7:143–153. doi:10.1093/jmcb/mju047 PubMedCrossRefGoogle Scholar
  71. Michael M, Doherty MM (2005) Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Oncol 23:205–229. doi:10.1200/JCO.2005.02.120 PubMedCrossRefGoogle Scholar
  72. Mufson RA (1997) The role of serine/threonine phosphorylation in hematopoietic cytokine receptor signal transduction. FASEB J 11:37–44PubMedGoogle Scholar
  73. Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, Pao W, Michor F, Mallick P (2015) The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform 14:19–31. doi:10.4137/CIN.S19338 PubMedPubMedCentralGoogle Scholar
  74. Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, Lo RS, Massague J (2015) Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520:368–372. doi:10.1038/nature14336 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Osborne JK, Zaganjor E, Cobb MH (2012) Signal control through Raf: in sickness and in health. Cell Res 22:14–22. doi:10.1038/cr.2011.193 PubMedCrossRefGoogle Scholar
  76. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes edu cate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. doi:10.1038/nm.2753 PubMedCentralCrossRefPubMedGoogle Scholar
  77. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffe EB, Simian M (2012) The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat 133:459–471. doi:10.1007/s10549-011-1766-x PubMedCrossRefGoogle Scholar
  78. Postel-Vinay S, Bajrami I, Friboulet L, Elliott R, Fontebasso Y, Dorvault N, Olaussen KA, Andre F, Soria JC, Lord CJ, Ashworth A (2013) A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32:5377–5387. doi:10.1038/onc.2013.311 PubMedCrossRefGoogle Scholar
  79. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. doi:10.1038/nm.3394 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Radivojac P, Baenziger PH, Kann MG, Mort ME, Hahn MW, Mooney SD (2008) Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24:i241–i247. doi:10.1093/bioinformatics/btn267 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M, Gandhi V, Plunkett W (2006) Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 107:2517–2524. doi:10.1182/blood-2005-08-3351 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85. doi:10.1016/B978-0-12-380866-0.60003-4 PubMedGoogle Scholar
  83. Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O’Rourke K, Bazan F, Eastham-Anderson J, Yue P, Dornan D, Huang DC, Dixit VM (2010) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103–107. doi:10.1038/nature08646 PubMedCrossRefGoogle Scholar
  84. Shain KH, Landowski TH, Dalton WS (2000) The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 12:557–563PubMedCrossRefGoogle Scholar
  85. Shen H, He MM, Liu H, Wrighton SA, Wang L, Guo B, Li C (2007) Comparative metabolic capabil ities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 35:1292–1300. doi:10.1124/dmd.107.015354 PubMedCrossRefGoogle Scholar
  86. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751. doi:10.1038/onc.2010.215 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Smith BN, Odero-Marah VA (2012) The role of Snail in prostate cancer. Cell Adh Migr 6:433–441. doi:10.4161/cam.21687 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112. doi:10.1016/B978-0-12-380888-2.00003-0 PubMedCrossRefGoogle Scholar
  89. Song T, Dou C, Jia Y, Tu K, Zheng X (2015) TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 6:12061-12079. doi: 10.18632/oncotarget.3616
  90. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, Pane F, Muller MC, Ernst T, Rosti G, Porkka K, Baccarani M, Cross NC, Martinelli G (2011) BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118:1208–1215. doi:10.1182/blood-2010-12-326405 PubMedCrossRefGoogle Scholar
  91. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504. doi:10.1038/nature11183 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sun Y (2015) Tumor microenvironment and cancer therapy resistance. Cancer Lett. doi:10.1016/j.canlet.2015.07.044 Google Scholar
  93. Sun XX, Yu Q (2015) Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 36:1219–1227. doi:10.1038/aps.2015.92 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18:1359–1368. doi:10.1038/nm.2890 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sung SY, Hsieh CL, Wu D, Chung LW, Johnstone PA (2007) Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer 31:36–100. doi:10.1016/j.currproblcancer.2006.12.002 PubMedCrossRefGoogle Scholar
  96. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, Leversha MA, Mikkelsen T, Brennan CW (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109:3041–3046. doi:10.1073/pnas.1114033109 PubMedPubMedCentralCrossRefGoogle Scholar
  97. To KK, Polgar O, Huff LM, Morisaki K, Bates SE (2008) Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 6:151–164. doi:10.1158/1541-7786.MCR-07-0175 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, Griffin C, Thacker J, Ashworth A (2001) Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 20:4704–4716. doi:10.1093/emboj/20.17.4704 PubMedPubMedCentralCrossRefGoogle Scholar
  99. van de Kooij B, Rooswinkel RW, Kok F, Herrebout M, de Vries E, Paauwe M, Janssen GM, van Veelen PA, Borst J (2013) Polyubiquitination and proteasomal turnover controls the anti-apoptotic activity of Bcl-B. Oncogene 32:5439–5448. doi:10.1038/onc.2013.99 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796:75–90. doi:10.1016/j.bbcan.2009.03.002 PubMedGoogle Scholar
  101. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S, Yano S (2009) Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 15:6630–6638. doi:10.1158/1078-0432.CCR-09-1001 PubMedCrossRefGoogle Scholar
  102. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT, Fan ST (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52:528–539. doi:10.1002/hep.23692 PubMedCrossRefGoogle Scholar
  103. Woods D, Turchi JJ (2013) Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther 14:379–389. doi:10.4161/cbt.23761 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279:821–824. doi:10.1074/jbc.R300030200 PubMedCrossRefGoogle Scholar
  105. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280:11740–11748. doi:10.1074/jbc.M413878200 PubMedCrossRefGoogle Scholar
  106. Zahreddine H, Borden KL (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4:28. doi:10.3389/fphar.2013.00028 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhao QW, Zhou YW, Li WX, Kang B, Zhang XQ, Yang Y, Cheng J, Yin SY, Tong Y, He JQ, Yao HP, Zheng M, Wang YJ (2015) Akt mediated phosphorylation of Oct4 is associated with the proliferation of stemlike cancer cells. Oncol Rep 33:1621–1629. doi:10.3892/or.2015.3752 PubMedPubMedCentralGoogle Scholar
  108. Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, Ren G, Zhou T, Storz P, Wang HY, Kang Y (2014) PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell 26:358–373. doi:10.1016/j.ccr.2014.07.022 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3 beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940. doi:10.1038/ncb1173 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Suruchi Aggarwal
    • 1
  • Manu Kandpal
    • 1
  • Shailendra Asthana
    • 1
  • Amit Kumar Yadav
    • 1
  1. 1.Drug DiscoveryResearchCenter (DDRC), TranslationalHealth Science and Technology Institute (THSTI), NCR Biotech Science ClusterFaridabadIndia

Personalised recommendations