Skip to main content

Human Facial Expression Recognition Based on 3D Cuboids and Improved K-means Clustering Algorithm

  • Conference paper
  • First Online:
Book cover Cloud Computing and Security (ICCCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10040))

Included in the following conference series:

  • 1934 Accesses

Abstract

This paper focuses on human facial expression recognition in video sequences. Different from the methods of two-dimensional image recognition and three-dimensional spatial-temporal interest point detection, our approach highlights human facial expression recognition in complex spatial-temporal video datasets. The major challenge in facial expression recognition is how to obtain a feature dictionary from extracted cube pixel windows based on clustering algorithm. In this paper, our contributions are mainly concentrated on two aspects. Firstly, we combine discrete linear filter with key parameters selection procedure to extract 3D cuboids. Secondly, we propose a novel seed spot selection method to optimize K-means clustering algorithm. The proposed algorithms are evaluated on open databases. The results show that our approach can achieve outstanding results and the proposed approach is significantly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S., Shah, M.: Human action recognition in videos using kinematic features and multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 288–303 (2010)

    Article  Google Scholar 

  2. Wu, B., Yuan, C., Hu, W.: Human action recognition based on context-dependent graph kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2609–2616. IEEE (2014)

    Google Scholar 

  3. Lin, Y., Hua, J., Tang, N., Chen, M., Liao, H.: Depth and skeleton associated action recognition without online accessible rgb-d cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2617–2624. IEEE (2014)

    Google Scholar 

  4. Kantorov, V., Laptev, I.: Efficient feature extraction, encoding and classification for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2593–2600. IEEE (2014)

    Google Scholar 

  5. Zhang, B., Perina, A., Li, Z., Murino, V., Liu, J., Ji, R.: Bounding multiple gaussians uncertainty with application to object tracking. Int. J. Comput. Vision 118(3), 364–379 (2016)

    Article  MathSciNet  Google Scholar 

  6. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1110–1118. IEEE (2015)

    Google Scholar 

  7. Zhang, H., Zhou, W., Reardon, C., Parker, L.: Simplex-based 3D spatio-temporal feature description for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2059–2066. IEEE (2014)

    Google Scholar 

  8. Zhang, B., Li, Z., Perina, A., Del Bue, A., Murino, V.: Adaptive Local Movement Modelling (ALMM) for object tracking. IEEE Trans. Circuits Syst. Video Technol. 99(1051–8215), 1 (2016)

    Google Scholar 

  9. Wang, J., Wu, Y.: Learning maximum margin temporal warping for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2688–2695. IEEE (2013

    Google Scholar 

  10. Ballas, N., Yang, Y., Lan, Z., Delezoide, B., Preteux, F., Hauptmann, A.: Space-time robust representation for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2704–2711. IEEE (2013)

    Google Scholar 

  11. Zheng, J., Jiang, Z.: Learning view-invariant sparse representations for cross-view action recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3176–3183. IEEE (2013)

    Google Scholar 

  12. Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1510–1519. IEEE (2015)

    Google Scholar 

  13. Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64(2), 107–123 (2005)

    Article  MathSciNet  Google Scholar 

  14. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Proceedings of the IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (PETS), pp. 65–72. IEEE (2005)

    Google Scholar 

  15. Lowe, D.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_33

    Chapter  Google Scholar 

  17. Celebi, M., Kingravi, H., Vela, P.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Int. J. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  18. Ghosh, S., Dubey, S.: Comparative analysis of K-means and fuzzy C-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4), 34–39 (2013)

    Google Scholar 

  19. Wen, X., Shao, L., Xue, Y., Fang, W.: A rapid learning algorithm for vehicle classification. Inf. Sci. 295(1), 395–406 (2015)

    Article  Google Scholar 

  20. Zheng, Y., Jeon, B., Xu, D., Wu, Q., Zhang, H.: Image segmentation by generalized hierarchical fuzzy C-means algorithm. J. Intell. Fuzzy Syst. 28(2), 961–973 (2015)

    Google Scholar 

  21. Gu, B., Sheng, V., Tay, K., Romano, W., Li, S.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, B., Perina, A., Murino, V., Del Bue, A.: Sparse representation classification with manifold constraints transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4557–4565 (2015)

    Google Scholar 

  23. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Contract 61272052, 61473086, 61672079 and 61601466, in part by PAPD, in part by CICAEET, and in part by the National Basic Research Program of China under Grant 2015CB352501. The work of B. Zhang was supported by the Program for New Century Excellent Talents University within the Ministry of Education, China, and Beijing Municipal Science & Technology Commission Z161100001616005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yang, Y., Yang, B., Wei, W., Zhang, B. (2016). Human Facial Expression Recognition Based on 3D Cuboids and Improved K-means Clustering Algorithm. In: Sun, X., Liu, A., Chao, HC., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2016. Lecture Notes in Computer Science(), vol 10040. Springer, Cham. https://doi.org/10.1007/978-3-319-48674-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48674-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48673-4

  • Online ISBN: 978-3-319-48674-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics