Advertisement

Use of Blanching to Reduce Antinutrients, Pesticides, and Microorganisms

  • João Luiz Andreotti Dagostin
Chapter

Abstract

Undesirable substances may occur in vegetable species as endogenous substances called antinutrients. Other undesirable compounds may exist in foods through external sources, due to the contamination by pesticides and microorganisms for example. Some of the positive side effects incurring in blanched foods comprise the removal of these substances and microorganisms, which may imply quality loss, toxicological problems, and infectious diseases. The removal rate of each substance is dependent on parameters related to the process, food characteristics, and substance type. In most processing lines, a few methods are auto sufficient in removing undesirable substances and chemicals from foods, and most of these methods are too aggressive. For microorganisms, sterilization processes can completely remove microbial contamination, but only a fraction of foods can be processed by such a rigorous operation. Blanching is an adequate method that can be used to remove part of the undesirable substances and lower microbial content of raw materials with less changes in their original characteristics. In this chapter, it will be shown and discussed how blanching affects some antinutrients, pesticides, and microorganisms on foods, with a brief presentation of each substance to better understand their role on the physiological disorders caused in humans.

Keywords

Blanching Antinutrients Pesticides Microorganisms 

References

  1. Alexandre EMC, Santos-Pedro DM, Brandão TRS, Silva CLM (2011) Study on thermosonication and ultraviolet radiation processes as an alternative to blanching for some fruits and vegetables. Food Bioprocess Technology 4:1012–1019. Doi: 10.1007/s11947-011-0540-8 CrossRefGoogle Scholar
  2. Almazan AM (1995) Antinutritional factors in sweetpotato greens. J Food Compos Anal 8:363–368CrossRefGoogle Scholar
  3. Almazan AM, Begum F (1996) Nutrients and antinutrients in peanut greens. J Food Compos Anal 9:375–383. Doi: 10.1006/jfca.1996.0043 CrossRefGoogle Scholar
  4. Amarowicz R (2007) Tannins: the new natural antioxidants? Eur J Lipid Sci Technol 109:549–551. Doi: 10.1002/ejlt.200700145 CrossRefGoogle Scholar
  5. Ani JC, Inyang UE, Udoidem I (2015) Effect of concentration of debittering agent on the mineral, vitamin and phytochemical contents of Lasianthera africana leafy vegetable. Afr J Food Sci 9:194–199. Doi: 10.5897/AJFS2014.1209 CrossRefGoogle Scholar
  6. Arcoverde JHV, Carvalho ADS, de Almeida Neves FP et al (2014) Screening of Caatinga plants as sources of lectins and trypsin inhibitors. Nat Prod Res 28:1297–1301. Doi: 10.1080/14786419.2014.900497 CrossRefGoogle Scholar
  7. Bajwa U, Sandhu KS (2014) Effect of handling and processing on pesticide residues in food- A review. J Food Sci Technol 51:201–220. Doi: 10.1007/s13197-011-0499-5 CrossRefGoogle Scholar
  8. Bhat S, Sharma HK (2016) Combined effect of blanching and sonication on quality parameters of bottle gourd (Lagenaria siceraria) juice. Ultrason Sonochem 33:182–189. Doi: 10.1016/j.ultsonch.2016.04.014 CrossRefGoogle Scholar
  9. Bonnechère A, Hanot V, Jolie R et al (2012) Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 25:397–406. Doi: 10.1016/j.foodcont.2011.11.010 CrossRefGoogle Scholar
  10. Bouvard V, Loomis D, Guyton KZ et al (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 16:1599–1600. Doi: 10.1016/S1470-2045(15)00444-1 CrossRefGoogle Scholar
  11. Bradbury JH, Hammer B, Nguyen T et al (1985) Protein quantity and quality and trypsin inhibitor content of sweet potato cultivars from the highlands of Papua New Guinea. J Agric Food Chem 33:281–285CrossRefGoogle Scholar
  12. Chamberlain K, Evans AA, Bromilow RH (1996) 1-Octanol/water partition coefficient (Kow) and pKa for ionisable pesticides measured by apH-Metric method. Pestic Sci 47:265–271. Doi: 10.1002/(SICI)1096-9063(199607)47:3<265:AID-PS416>3.0.CO;2-F CrossRefGoogle Scholar
  13. Chan TYK (2011) Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol Lett 200:107–108. Doi: 10.1016/j.toxlet.2010.11.002 CrossRefGoogle Scholar
  14. Chau C-F, Cheung PC-K (1997) Effect of various processing methods on antinutrients and in vitro digestibility of protein and starch of two Chinese indigenous legume seeds. J Agric Food Chem 45:4773–4776. Doi: 10.1021/jf970504p CrossRefGoogle Scholar
  15. Chung SWC, Tran JCH, Tong KSK et al (2011) Nitrate and nitrite levels in commonly consumed vegetables in Hong Kong. Food Addit Contam Part B 4:34–41. Doi: 10.1080/19393210.2011.557784 CrossRefGoogle Scholar
  16. Crossey LJ (1991) Thermal degradation of aqueous oxalate species. Geochim Cosmochim Acta 55:1515–1527. Doi: 10.1016/0016-7037(91)90124-N CrossRefGoogle Scholar
  17. Dao L, Friedman M (1994) Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes. J Agric Food Chem 42:633–639. Doi: 10.1021/jf00039a006 CrossRefGoogle Scholar
  18. Dimenstein L, Lisker N, Kedar N, Levy D (1997) Changes in the content of steroidal glycoalkaloids in potato tubers grown in the field and in the greenhouse under different conditions of light, temperature and daylength. Physiol Mol Plant Pathol 50:391–402. Doi: 10.1006/pmpp.1997.0098 CrossRefGoogle Scholar
  19. DiPersio PA, Kendall PA, Yoon Y, Sofos JN (2007) Influence of modified blanching treatments on inactivation of Salmonella during drying and storage of carrot slices. Food Microbiol 24:500–507. Doi: 10.1016/j.fm.2006.09.004 CrossRefGoogle Scholar
  20. Donya A, Hettiarachchy N, Liyanage R et al (2007) Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable. J Agric Food Chem 55:5827–5833. Doi: 10.1021/jf070428i CrossRefGoogle Scholar
  21. Dubrow R, Darefsky AS, Park Y et al (2010) Dietary components related to N-nitroso compound formation: a prospective study of adult glioma. Cancer Epidemiol Biomark Prev 19:1709–1722. Doi: 10.1158/1055-9965.EPI-10-0225 CrossRefGoogle Scholar
  22. Duval A, Avérous L (2016) Characterization and physicochemical properties of condensed tannins from acacia catechu. J Agric Food Chem 64:1751–1760. Doi: 10.1021/acs.jafc.5b05671 CrossRefGoogle Scholar
  23. Elzbieta R (2012) The effect of industrial potato processing on the concentrations of glycoalkaloids and nitrates in potato granules. Food Control 28:380–384. Doi: 10.1016/j.foodcont.2012.04.049 CrossRefGoogle Scholar
  24. Farrant JM, Traill Z, Conlon C et al (1996) Pigbel-like syndrome in a vegetarian in Oxford. Gut 39:336–337. Doi: 10.1136/gut.39.2.336 CrossRefGoogle Scholar
  25. Finizio A, Vighi M, Sandroni D (1997) Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere 34:131–161. Doi: 10.1016/S0045-6535(96)00355-4 CrossRefGoogle Scholar
  26. Foster JW (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987CrossRefGoogle Scholar
  27. Friedman M (2006) Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. J Agric Food Chem 54:8655–8681. Doi: 10.1021/jf061471t CrossRefGoogle Scholar
  28. Friedman M (2015) Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem 63:3323–3337. Doi: 10.1021/acs.jafc.5b00818 CrossRefGoogle Scholar
  29. Friedman M, Roitman JN, Kozukue N (2003) Glycoalkaloid and calystegine contents of eight potato cultivars. J Agric Food Chem 51:2964–2973. Doi: 10.1021/jf021146f CrossRefGoogle Scholar
  30. Gamel TH, Linssen JP, Mesallam AS et al (2006) Seed treatments affect functional and antinutritional properties of amaranth flours. J Sci Food Agric 86:1095–1102. Doi: 10.1002/jsfa.2463 CrossRefGoogle Scholar
  31. Gangolli SD, van den Brandt PA, Feron VJ et al (1994) Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol Environ Toxicol Pharmacol 292:1–38. Doi: 10.1016/0926-6917(94)90022-1 CrossRefGoogle Scholar
  32. Gaugler M, Grigsby WJ (2009) Thermal degradation of condensed tannins from Radiata pine bark. J Wood Chem Technol 29:305–321. Doi: 10.1080/02773810903165671 CrossRefGoogle Scholar
  33. Gómez MJ, Herrera S, Solé D et al (2011) Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 83:2638–2647. Doi: 10.1021/ac102909g CrossRefGoogle Scholar
  34. Gómez PL, Alzamora SM, Castro MA, Salvatori DM (2010) Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. J Food Eng 98:60–70. Doi: 10.1016/j.jfoodeng.2009.12.008 CrossRefGoogle Scholar
  35. Hildebrand DF, Hamilton-Kemp TR, Loughrin JH et al (1990) Lipoxygenase 3 reduces hexanal production from soybean seed homogenates. J Agric Food Chem 38:1934–1936CrossRefGoogle Scholar
  36. Hill RH, Head SL, Baker S et al (1995) Pesticide residues in urine of adults living in the United States: reference range concentrations. Environ Res 71:99–108. Doi: 10.1006/enrs.1995.1071 CrossRefGoogle Scholar
  37. Huan Z, Xu Z, Jiang W et al (2015) Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing. Food Chem 170:118–122. Doi: 10.1016/j.foodchem.2014.08.052 CrossRefGoogle Scholar
  38. Jabbar S, Abid M, Hu B et al (2014) Quality of carrot juice as influenced by blanching and sonication treatments. LWT-Food Sci Technol 55:16–21. Doi: 10.1016/j.lwt.2013.09.007 CrossRefGoogle Scholar
  39. Jakszyn P, Gonzalez C-A (2006) Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol 12:4296–4303CrossRefGoogle Scholar
  40. Jaworska G (2005) Nitrates, nitrites, and oxalates in products of spinach and New Zealand spinach. Food Chem 93:395–401. Doi: 10.1016/j.foodchem.2004.09.035 CrossRefGoogle Scholar
  41. Kaneko H, Miyamoto J (2001) Pyrethroid chemistry and metabolism. In: Krieger RI, Krieger WC (eds) Handbook of pesticide toxicology, 2nd edn. Academic Press, San Diego, pp 1263–1288CrossRefGoogle Scholar
  42. Keikotlhaile BM, Spanoghe P, Steurbaut W (2010) Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach. Food Chem Toxicol 48:1–6. Doi: 10.1016/j.fct.2009.10.031 CrossRefGoogle Scholar
  43. Khan MS, Munir I, Khan I (2013) The potential of unintended effects in potato glycoalkaloids. Afr J Biotechnol 12:754–766. Doi: 10.5897/AJBX11.025 Google Scholar
  44. Kim NH, Lee NY, Kim SH et al (2015) Optimization of low-temperature blanching combined with calcium treatment to inactivate Escherichia coli O157:H7 on fresh-cut spinach. J Appl Microbiol 119:139–148. Doi: 10.1111/jam.12815 CrossRefGoogle Scholar
  45. Kim S-W, Abd El-Aty AM, Rahman MM, et al (2014) Detection of pyridaben residue levels in hot pepper fruit and leaves by liquid chromatography-tandem mass spectrometry: effect of household processes. Biomed Chromatogr n/a–n/a. Doi: 10.1002/bmc.3383
  46. Korus A, Lisiewska Z, Słupski J, Gębczyński P (2011) Retention of oxalates in frozen products of three brassica species depending on the methods of freezing and preparation for consumption. Int J Refrig 34:1527–1534. Doi: 10.1016/j.ijrefrig.2011.05.009 CrossRefGoogle Scholar
  47. Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959. Doi: 10.1016/j.foodchem.2009.11.052 CrossRefGoogle Scholar
  48. Kwon H, Kim T-K, Hong S-M et al (2015) Effect of household processing on pesticide residues in field-sprayed tomatoes. Food Sci Biotechnol 24:1–6. Doi: 10.1007/s10068-015-0001-7 CrossRefGoogle Scholar
  49. Lachman J, Hamouz K, Musilová J et al (2013) Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem 138:1189–1197. Doi: 10.1016/j.foodchem.2012.11.114 CrossRefGoogle Scholar
  50. Leszczyńska T, Filipiak-Florkiewicz A, Cieślik E et al (2009) Effects of some processing methods on nitrate and nitrite changes in cruciferous vegetables. J Food Compos Anal 22:315–321. Doi: 10.1016/j.jfca.2008.10.025 CrossRefGoogle Scholar
  51. Liener IE, Kakade ML (1969) Protease inhibitors. In: Liener IE (ed) Toxic constituents of plant foodstuffs. New York, pp 8–68Google Scholar
  52. Lisiewska Z, Korus A, Kmiecik W, Gebczyński P (2006) Effect of maturity stage on the content of ash components in raw and preserved grass pea (Lathyrus sativus L.) seeds. Int J Food Sci Nutr 57:39–45. Doi: 10.1080/09637480500515420 CrossRefGoogle Scholar
  53. Lv YC, Song HL, Li X et al (2011) Influence of blanching and grinding process with hot water on beany and non-beany flavor in soymilk. J Food Sci 76:20–25. Doi: 10.1111/j.1750-3841.2010.01947.x CrossRefGoogle Scholar
  54. Mäder J, Rawel H, Kroh LW (2009) Composition of Phenolic Compounds and Glycoalkaloids α-Solanine and α-Chaconine during Commercial Potato Processing. J Agric Food Chem 57:6292–6297. Doi: 10.1021/jf901066k CrossRefGoogle Scholar
  55. Marshall DL, Dickson JS, Nguyen NH (2016) Ensuring food safety in insect based foods: mitigating microbiological and other foodborne hazards. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients. Academic Press, San Diego, pp 223–253CrossRefGoogle Scholar
  56. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Compr Rev Food Sci Food Saf 8:17–27. Doi: 10.1111/j.1541-4337.2008.00064.x CrossRefGoogle Scholar
  57. Mosha TC, Gaga HE (1999) Nutritive value and effect of blanching on the trypsin and chymotrypsin inhibitor activities of selected leafy vegetables. Plant Foods Hum Nutr 54:271–283. Doi: 10.1023/A:1008157508445 CrossRefGoogle Scholar
  58. Mozzoni LA, Chen P, Morawicki RO et al (2009) Quality attributes of vegetable soybean as a function of boiling time and condition. Int J Food Sci Technol 44:2089–2099. Doi: 10.1111/j.1365-2621.2009.02038.x CrossRefGoogle Scholar
  59. Muraleedharan K, Kripa S (2014) DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim 115:1969–1978. Doi: 10.1007/s10973-013-3366-y CrossRefGoogle Scholar
  60. Murugkar DA (2015) Effect of different process parameters on the quality of soymilk and tofu from sprouted soybean. J Food Sci Technol 52:2886–2893. Doi: 10.1007/s13197-014-1320-z CrossRefGoogle Scholar
  61. Nambisan B, Sundaresan S (1985) Effect of processing on the cyanoglucoside content of cassava. J Sci Food Agric 36:1197–1203. Doi: 10.1002/jsfa.2740361126 CrossRefGoogle Scholar
  62. Nkafamiya II, Oseameahon SA, Modibbo UU, Haggai D (2010) Vitamins and effect of blanching on nutritional and anti-nutritional values of non-conventional leafy vegetables. Afr J Food Sci 4:335–341Google Scholar
  63. Noonan SC, Savage GP (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8:64–74. Doi: 10.1046/j.1440-6047.1999.00038.x CrossRefGoogle Scholar
  64. Nwosu JN (2010) Effect of soaking, blanching and cooking on the anti-nutritional properties of asparagus bean (Vigna sesquipedis) flour. Nat Sci 8:163–167Google Scholar
  65. Oboh G (2005) Effect of some post-harvest treatments on the nutritional properties of Cnidoscolus acontifolus leaf. Pakistan J Nutr 4:226–230. Doi: 10.3923/pjn.2005.226.230 CrossRefGoogle Scholar
  66. Oboh G, Ekperigin MM, Kazeem MI (2005) Nutritional and haemolytic properties of eggplants (Solanum macrocarpon) leaves. J Food Compos Anal 18:153–160. Doi: 10.1016/j.jfca.2003.12.013 CrossRefGoogle Scholar
  67. Oner ME, Walker PN (2011) Shelf-life of near-aseptically packaged refrigerated potato strips. LWT-Food Sci Technol 44:1616–1620. Doi: 10.1016/j.lwt.2011.02.003 CrossRefGoogle Scholar
  68. Pao S, Ettinger MR, Khalid MF et al (2008) Microbiological quality of frozen “edamame” (vegetable soybean). J Food Saf 28:300–313. Doi: 10.1111/j.1745-4565.2008.00121.x CrossRefGoogle Scholar
  69. Patel B, Schutte R, Sporns P et al (2002) Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. Inflamm Bowel Dis 8:340–346. Doi: 10.1097/00054725-200209000-00005 CrossRefGoogle Scholar
  70. Pȩksa A, Gołubowska G, Aniołowski K et al (2006) Changes of glycoalkaloids and nitrate contents in potatoes during chip processing. Food Chem 97:151–156. Doi: 10.1016/j.foodchem.2005.03.035 CrossRefGoogle Scholar
  71. Petres J, Senkalszky-Akos E, Czukor B (1990) Inactivation of trypsin inhibitor, lectin and urease in soybean by hydrothermal treatment. Nahrung 34:905–913CrossRefGoogle Scholar
  72. Phillips BJ, Hughes JA, Phillips JC et al (1996) A study of the toxic hazard that might be associated with the consumption of green potato tops. Food Chem Toxicol 34:439–448. Doi: 10.1016/0278-6915(96)87354-6 CrossRefGoogle Scholar
  73. Radwan MA, Abu-Elamayem MM, Shiboob MH, Abdel-Aal A (2005) Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food Chem Toxicol 43:553–557. Doi: 10.1016/j.fct.2004.12.009 CrossRefGoogle Scholar
  74. Roddick JG, Weissenberg M, Leonard AL (2001) Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56:603–610. Doi: 10.1016/S0031-9422(00)00420-9 CrossRefGoogle Scholar
  75. Rytel E (2013) Effect of technological factors on glycoalkaloids and nitrates content in dehydrated potato. Ital J Food Sci 25:142–148Google Scholar
  76. Rytel E (2012a) Changes in glycoalkaloid and nitrate content in potatoes during dehydrated dice processing. Food Control 25:349–354. Doi: 10.1016/j.foodcont.2011.10.053 CrossRefGoogle Scholar
  77. Rytel E (2012b) Changes in the levels of glycoalkaloids and nitrates after the dehydration of cooked potatoes. Am J Potato Res 89:501–507. Doi: 10.1007/s12230-012-9273-0 CrossRefGoogle Scholar
  78. Rytel E, Gołubowska G, Lisińska G et al (2005) Changes in glycoalkaloid and nitrate contents in potatoes during French fries processing. J Sci Food Agric 85:879–882. Doi: 10.1002/jsfa.2048 CrossRefGoogle Scholar
  79. Rytel E, Tajner-Czopek A, Aniołowska M, Hamouz K (2013) The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chem 141:2495–2500. Doi: 10.1007/s00217-014-2163-6 CrossRefGoogle Scholar
  80. Sallau AB, Mada SB, Ibrahim S, Ibrahim U (2012) Effect of boiling, simmering and blanching on the antinutritional content of Moringa oleifera leaves. Int J Food Nutr Saf 2:1–6Google Scholar
  81. Savage GP, Vanhanen L, Mason SM, Ross AB (2000) Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J Food Compos Anal 13:201–206. Doi: 10.1006/jfca.2000.0879 CrossRefGoogle Scholar
  82. Shi J, Arunasalam K, Yeung D et al (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7:67–78. Doi: 10.1089/109662004322984734 CrossRefGoogle Scholar
  83. Shi J, Xue SJ, Ma Y et al (2009) Kinetic study of saponins B stability in navy beans under different processing conditions. J Food Eng 93:59–65. Doi: 10.1016/j.jfoodeng.2008.12.035 CrossRefGoogle Scholar
  84. Siener R, Hönow R, Seidler A et al (2006) Oxalate contents of species of the polygonaceae, amaranthaceae and chenopodiaceae families. Food Chem 98:220–224. Doi: 10.1016/j.foodchem.2005.05.059 CrossRefGoogle Scholar
  85. Sinden SL, Deahl KL, Aulenbach BB (1976) Effect of glycoalkaloids and phenolics on potato flavor. J Food Sci 41:520–523. Doi: 10.1111/j.1365-2621.1976.tb00661.x CrossRefGoogle Scholar
  86. Siwela AH, Mukaroa KJ, Nziramasanga N (2011) Aflatoxin Carryover during large scale peanut butter production. Food Nutr Sci 2:105–108. Doi: 10.4236/fns.2011.22014 CrossRefGoogle Scholar
  87. Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: Some unanswered questions. Trends Food Sci Technol 7:126–131. Doi: 10.1016/0924-2244(96)10013-3 CrossRefGoogle Scholar
  88. Somsub W, Kongkachuichai R, Sungpuag P, Charoensiri R (2008) Effects of three conventional cooking methods on vitamin C, tannin, myo-inositol phosphates contents in selected Thai vegetables. J Food Compos Anal 21:187–197. Doi: 10.1016/j.jfca.2007.08.002 CrossRefGoogle Scholar
  89. Sucha L, Tomsik P (2016) The steroidal glycoalkaloids from solanaceae: toxic effect, antitumour activity and mechanism of action. Planta Med 82:379–387. Doi: 10.1055/s-0042-100810 CrossRefGoogle Scholar
  90. Tadeo JL, Sánchez-Brunete C, González L (2008) Pesticides: classification and properties. In: Tadeo JL (ed) Analysis of pesticides in food and environmental samples. CRC Press, Boca Raton, pp 1–34CrossRefGoogle Scholar
  91. Tajner-Czopek A, Rytel E, Kita A et al (2012) The influence of thermal process of coloured potatoes on the content of glycoalkaloids in the potato products. Food Chem 133:1117–1122. Doi: 10.1016/j.foodchem.2011.10.015
  92. Tajner-Czopek A, Rytel E, Aniołowska M, Hamouz K (2014) The influence of French fries processing on the glycoalkaloid content in coloured-fleshed potatoes. Eur Food Res Technol 238:895–904. Doi: 10.1007/s00217-014-2163-6 CrossRefGoogle Scholar
  93. Tricker AR, Preussmann R (1991) Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res Toxicol 259:277–289. Doi: 10.1016/0165-1218(91)90123-4 CrossRefGoogle Scholar
  94. Tunçel G, Nout MJR, Brimer L (1998) Degradation of cyanogenic glycosides of bitter apricot seeds (Prunus armeniaca) by endogenous and added enzymes as affected by heat treatments and particle size. Food Chem 63:65–69. Doi: 10.1016/S0308-8146(97)00217-3 CrossRefGoogle Scholar
  95. Uusiku NP, Oelofse A, Duodu KG et al (2010) Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: a review. J Food Compos Anal 23:499–509. Doi: 10.1016/j.jfca.2010.05.002 CrossRefGoogle Scholar
  96. van Ravenzwaay B, Leibold E (2004) A comparison between in vitro rat and human and in vivo rat skin absorption studies. Hum Exp Toxicol 23:421–430. Doi: 10.1191/0960327104ht471oa CrossRefGoogle Scholar
  97. Vanderjagt DJ, Freiberger C, Vu HTN et al (2000) The trypsin inhibitor content of 61 wild edible plant foods of Niger. Plant Foods Hum Nutr 55:335–346. Doi: 10.1023/A:1008136100545 CrossRefGoogle Scholar
  98. Vandeweyer D, Lenaerts S, Callens A, Van Campenhout L (2017) Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control 71:311–314. Doi: 10.1016/j.foodcont.2016.07.011 CrossRefGoogle Scholar
  99. Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36. Doi: 10.1016/S0041-0101(99)00128-2 CrossRefGoogle Scholar
  100. Vighi M, Di Guardo A (1995) Preditive approaches for the evaluation of pesticide exposure. In: Vighi M, Funari E (eds) Pesticide risk in groundwater. Lewis Publishers Inc., Boca Raton, pp 73–100Google Scholar
  101. Villalobos MC, Serradilla MJ, Martín A et al (2016) Evaluation of different drying systems as an alternative to sun drying for figs (Ficus carica L). Innov Food Sci Emerg Technol 36:156–165. Doi: 10.1016/j.ifset.2016.06.006 CrossRefGoogle Scholar
  102. Vuong QV, Golding JB, Nguyen MH, Roach PD (2013) Preparation of decaffeinated and high caffeine powders from green tea. Powder Technol 233:169–175. Doi: 10.1016/j.powtec.2012.09.002 CrossRefGoogle Scholar
  103. Wang N, Lewis MJ, Brennan JG, Westby A (1997) Effect of processing methods on nutrients and anti-nutritional factors in cowpea. Food Chem 58:59–68. Doi: 10.1016/S0308-8146(96)00212-9 CrossRefGoogle Scholar
  104. Weitzberg E, Lundberg JO (2013) Novel aspects of dietary nitrate and human health. Annu Rev Nutr 33:129–159. Doi: 10.1146/annurev-nutr-071812-161159 CrossRefGoogle Scholar
  105. Yadav SK, Sehgal S (2003) Effect of domestic processing and cooking on selected antinutrient contents of some green leafy vegetables. Plant Foods Hum Nutr 58:1–11. Doi: 10.1023/B:QUAL.0000040359.40043.4f CrossRefGoogle Scholar
  106. Yuan S, Chang SKC, Liu Z, Xu B (2008) Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. J Agric Food Chem 56:7957–7963. Doi: 10.1021/jf801039h CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graduate Program in Food Engineering, Chemical Engineering DepartmentFederal University of ParanáCuritibaBrazil

Personalised recommendations