Skip to main content

Protection and Operational Dosimetric Quantities and Calibration

  • Chapter
  • First Online:
  • 1484 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter is devoted to protection and operational dosimetric quantities. These quantities are of paramount importance for radiation protection problems: The limit exposure of workers and public are in term of protection quantity while measurement with radiation device is in term of operational quantity. In what follows, these quantities are defined, compared and calculated for major radiation field. A final part is dedicated to the calibration of radiation protection devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ICRP. (1991). Publication 60. Recommendations of the ICW. Annals of ICRP, 21(1–3).

    Google Scholar 

  2. ICRP. (2007). Publication 103. Recommandations 2007 de la Commission internationale de Protection radiologique.

    Google Scholar 

  3. ICRP. (2010). Publication 116. Conversion coefficients for radiological protection quantities for external radiation exposures. Annals of ICRP, 40(2–5).

    Google Scholar 

  4. ASN. (2011). Revue contrôle n°192. Imagerie médicale, maîtriser les expositions aux rayonnements ionisants.

    Google Scholar 

  5. ICRP. (2012). ICRP statement on tissue reactions/early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Annals of ICRP, 41(1/2).

    Google Scholar 

  6. Council Directive 2013/59/Euratom. (2013). Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directive 89/618/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/43/Euratom.

    Google Scholar 

  7. ICRP. (1996). Publication 74. Conversion coefficients for use in radiological protection against external radiation.

    Google Scholar 

  8. Antoni, R., & Bourgois, L. (2005). communication privée.

    Google Scholar 

  9. Schultz, F. W., & Zoetelief, J. (1996). Organ and effective doses in the male phantom ADAM exposed in AP direction to broad beams of monoenergetic electrons. Health Physics, 70(4), 498–504.

    Article  Google Scholar 

  10. Bourgois, L. (2011). Estimation de la dose extrémité due à une contamination par un radionucléide émetteur β: l’équivalent de dose est-il un bon estimateur de la grandeur de protection? Radioprotection, 46(2), 175–187.

    Article  Google Scholar 

  11. Cross, W. G. (1997). Empirical expression for beta ray point source dose distributions. Radiation Protection Dosimetry, 69(2), 85–96.

    Article  Google Scholar 

  12. IRSN. (2010). Doses délivrées aux patients en scanographie et en radiologie conventionnelle Résultats d’une enquête multicentrique en secteur public - Rapport DRPH/SER N°2010–12.

    Google Scholar 

  13. Ferreux, L., & Bourgois, L. (2005). Communication privée.

    Google Scholar 

  14. Antoni, R. (2006). Calculs de débits de dose pour l’accélérateur Aglae du Louvre. CEA Saclay: Rapport interne.

    Google Scholar 

  15. Huet, C., Clairand, I., Trompier, F., Bey, E., & Bottollier-Depois, J. F. (2007). Reconstitution de dose par calcul Monte-Carlo en cas d’accident radiologique : application à l’accident du Chili. Radioprotection, 42(4), 489–500.

    Google Scholar 

  16. Lemosquet, A., Clairand, I., de Carlan, L., Franck, D., Aubineau-Lanièce, I., & Bottollier-Depois, J. F. (2004). A computational tool based on voxel geometry for dose reconstruction of a radiological accident due to external exposure. Radiation Protection Dosimetry, 110, 449–454.

    Article  Google Scholar 

  17. ICRU. (1985). Détermination des équivalents de dose dus aux sources externes de rayonnement. Publication 39.

    Google Scholar 

  18. ICRU. (1988). Determination of dose equivalents from external radiation sources-Part II. Publication 43.

    Google Scholar 

  19. ICRU. (1992). Measurement of dose equivalents from external photon and electron radiations. Publication 47.

    Google Scholar 

  20. ICRU. (1993). Quantities and units in radiation protection dosimetry. Publication 51.

    Google Scholar 

  21. ICRU. (1980). Radiation quantities and units. Publication 33.

    Google Scholar 

  22. Ferrari, A., & Pelliccioni, M. (1998). Fluence to dose equivalent conversion data and effective quality factors for high energy neutrons. Radiation Protection Dosimetry, 76(4), 215–224.

    Article  Google Scholar 

  23. Leuthold, G., Mares, V., & Schraube, H. (1992). Calculation of the neutron ambient dose equivalent on the basis of the ICRP revised quality factors. Radiation Protection Dosimetry, 40(2), 77–84.

    Google Scholar 

  24. Katz, L., & Penfold, A. S. (1952). Range energy relations for electrons and the determination on beta-ray end point energies by absorption. Reviews of Modern Physics, 24(1), 28–44.

    Article  ADS  Google Scholar 

  25. Furstoss, C. (2006). Conception et développement d’un fantôme anthropomorphe équipé de détecteurs dans le but d’évaluer la dose efficace à un poste de travail: étude de faisabilité. Thèse de l’Université de Paris XI.

    Google Scholar 

  26. Lund/LBNL Nuclear Data Search 1999.

    Google Scholar 

  27. Gualdrini, G., Bordy, J. M., Daures, J., Fantuzzi, E., Ferrari, P., Mariotti, F., et al. (2013). Air kerma to HP(3) conversion coefficients for photons from 10 keV to 10 MeV, calculated in a cylindrical phantom. Radiation Protection Dosimetry, 154(4), 522–525.

    Article  Google Scholar 

  28. Pelliccioni, M. (2000). Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiation Protection Dosimetry, 88(4), 279–297.

    Article  Google Scholar 

  29. ISO 8529. (1989). Neutron reference radiation for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy (Genève).

    Google Scholar 

  30. Joffre, H. (1963). Les problèmes physiques de la radioprotection. Génie atomique tome I.

    Google Scholar 

  31. Pelliccioni, M. (1998). Fluence to dose equivalent conversion data and radiation weighting factors for high energy radiation. Radiation Protection Dosimetry, 77(3), 159–170.

    Article  Google Scholar 

  32. Chumak, V. V., & Bakhanova, E. V. (2003). Relationship between protection and operational quantities in dosimetry of photon external exposure—Deficiencies of H p(10). Radiation Protection Dosimetry, 104(2), 103–111.

    Google Scholar 

  33. ISO 4037. (1992). X and gamma reference radiations for calibrating dosimeters and dose ratemeters and for determining their response as a function of photon energy, Part 1 et 2.

    Google Scholar 

  34. ISO 6980. (1992). Reference beta radiations for calibrating dosimeters and doserate meters and for determining their response as a function of beta radiation energy.

    Google Scholar 

  35. Faussot, A. (2010). Étalonnage du matériel de radioprotection ATSR.

    Google Scholar 

  36. IAEA. (2001). Compendium of neutron spectra and detector responses for radiation protection purposes. Technical Reports Series No. 403. Supplement No. 318.

    Google Scholar 

  37. Martel, P. (2009). Évaluation technique d’un débitmètre/dosimètre dans le cadre du contrôle réglementaire des générateurs électriques de Rayons X utilisés en radiodiagnostic Congrès de la Société Française de Radioprotection - La Hague.

    Google Scholar 

  38. Lopez Ponte, M. A., Castellani, C. M., Currivan, L., et al. (2004). A catalogue of dosemeters and dosimetric services within Europe—an update. Radiation Protection Dosimetry, 112(1), 45–68.

    Article  Google Scholar 

  39. Fraboulet, P. (2008). Fiche technique du dosimètre RPL rapport interne SDE/LSDOS – IRSN.

    Google Scholar 

  40. Girod, M., Bourgois, L., Cornillaux, G., Andre, S., & Postaük, J. (2004). Study and presentation of a fast neutron and photon dosemeter for area and criticality monitoring using radiophotoluminescent glass. Radiation Protection Dosimetry, 112(3).

    Google Scholar 

  41. Gambini, D. J., & Granier, R. (1997). Manuel pratique de radioprotection. 2e édition, Tec & Doc.

    Google Scholar 

  42. CEI 61526. (2005). Instrumentation pour la radioprotection – Mesure des équivalents de dose individuels Hp(10) et Hp(0.07) pour les rayonnements X, gamma, neutron et bêta – Appareils de mesure à lecture directe et moniteurs de l’équivalent de dose individuel.

    Google Scholar 

  43. Texier, C., Itié, C., Servière, H., Gressier, V., & Bolognese-Milsztage, T. (2001). Study of the photon radiation performance of electronic personal dosemeters. Radiation Protection Dosimetry, 96(1–3), 245–249.

    Article  Google Scholar 

  44. CEI 1323. Instrumentation pour la radioprotection - Rayonnements neutroniques - Moniteur individuel à lecture directe d’équivalent de dose et/ou de débit d’équivalent de dose.

    Google Scholar 

  45. Lahaye, T., Cutarella, D., Ménard, S., Rannou, A., & Bolognese-Milsztajn, T. (2000) Dosimètre individuel électronique pour les neutrons: Saphydose-n. Radioprotection, 35(2).

    Google Scholar 

  46. Lacoste, V., & Gressier, V. (2004). Monte Carlo simulation of the IRSN Canel/T400 realistic mixed neutrons-photon radiation field. Radiation Protection Dosimetry, 110(1–4), 123–127.

    Article  Google Scholar 

  47. Lacoste, V. (2007). Campagne de mesure, comparaison, perspectives » INSTN: session dosimétrie des neutrons.

    Google Scholar 

  48. Tatsuhiko, S., Akira, E., Yasuda, H., & Niita, K. (2011). Impact of the introduction of ICRP publication 103 on neutron dosimetry. Radiation Protection Dosimetry, 146.

    Google Scholar 

  49. Pelliccioni, M. (2004). The impact of ICRP publication 92 on the conversion coefficient in use for cosmic ray dosimetry. Radiation Protection Dosimetry, 109(4), 303–309.

    Article  Google Scholar 

  50. Bourgois, L., & Antoni, R. (2016). Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergeticpositrons using Monte-Carlo code MCNP6. Applied Radiation and Isotopes, 107(2016), 372–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Antoni .

Appendices

Appendix 1

Photon angular response R(0.07, α) for directional dose equivalent H′(0.07, α) for electron energy between 0.1 and 2 MeV—ICRP 74 [7]. Reproduced by permission of Michiya Sasaki on behalf of ICRP.

E (MeV)

R(0.07, α)

15°

30°

45°

60°

67.5°

75°

82.5°

85°

89°

0.07

1

0.813

0.471

0.17

0.041

0.005

   

0.08

1

0.903

0.645

0.348

0.132

0.028

0.007

0.003

 

0.09

1

0.926

0.709

0.445

0.201

0.055

0.017

0.01

0.001

0.1

1

0.938

0.76

0.509

0.258

0.081

0.027

0.016

0.002

0.15

1

0.989

0.945

0.771

0.486

0.18

0.064

0.2

1

1.046

1.12

1.072

0.751

0.295

0.106

0.06

0.008

0.4

1

1.039

1.143

1.33

1.348

1.083

0.661

0.245

0.133

0.015

0.7

1

1.028

1.11

1.266

1.517

1.502

1.085

0.426

0.216

0.023

1

1

1.017

1.087

1.227

1.469

1.583

1.308

0.552

0.294

0.03

1.5

1

1.027

1.075

1.191

1.401

1.574

1.572

0.756

2

1

1.022

1.066

1.163

1.338

1.51

1.654

0.95

0.53

0.053

3

1

1.004

1.038

1.113

1.264

1.39

1.612

1.277

0.731

0.072

4

1

1.007

1.042

1.097

1.239

1.369

1.546

1.479

0.952

0.093

7

1

1.005

1.019

1.071

1.18

1.274

1.419

1.736

1.412

0.151

10

1

1.01

1.016

1.05

1.126

1.22

1.345

1.661

1.646

0.21

Appendix 2

Photon angular dependence factor R(10, α) defined by the ratio of H p(10, α) on H p(10, 0°) for photon energies between 15 keV and 1 MeV, and for different angles of incidence, calculated by a Monte Carlo code—ICRP 74.

Photon energy (MeV)

H p(10, 0°)/K a (Sv/Gy)

Ratio H p(10, α)/Hp(10, 0°)

15°

30°

45°

60°

75°

0.010

0.009

1.000

0.889

0.556

0.222

0.000

0.000

0.0125

0.098

1.000

0.929

0.704

0.388

0.102

0.000

0.015

0.264

1.000

0.966

0.822

0.576

0.261

0.030

0.0175

0.445

1.000

0.971

0.879

0.701

0.416

0.092

0.020

0.611

1.000

0.982

0.913

0.763

0.520

0.167

0.025

0.883

1.000

0.980

0.937

0.832

0.650

0.319

0.030

1.112

1.000

0.984

0.950

0.868

0.716

0.411

0.040

1.490

1.000

0.986

0.959

0.894

0.760

0.494

0.050

1.766

1.000

0.988

0.963

0.891

0.779

0.526

0.060

1.892

1.000

0.988

0.969

0.911

0.793

0.561

0.080

1.903

1.000

0.997

0.970

0.919

0.809

0.594

0.100

1.811

1.000

0.992

0.972

0.927

0.834

0.612

0.125

1.696

1.000

0.998

0.980

0.938

0.857

0.647

0.150

1.607

1.000

0.997

0.984

0.947

0.871

0.677

0.200

1.492

1.000

0.997

0.991

0.959

0.900

0.724

0.300

1.369

1.000

1.000

0.996

0.984

0.931

0.771

0.400

1.300

1.000

1.004

1.001

0.993

0.955

0.814

0.500

1.256

1.000

1.005

1.002

1.001

0.968

0.846

0.600

1.226

1.000

1.005

1.004

1.003

0.975

0.868

0.800

1.190

1.000

1.001

1.003

1.007

0.987

0.892

1

1.167

1.000

1.000

0.996

1.009

0.990

0.910

1.5

1.139

1.000

1.002

1.003

1.006

0.997

0.934

3

1.117

1.000

1.005

1.010

0.998

0.998

0.958

6

1.109

1.000

1.003

1.003

0.992

0.997

0.995

10

1.111

1.000

0.998

0.995

0.989

0.992

0.966

Appendix 3

Photon conversion factors “fluence-ambient dose equivalent at 10 mm” and “fluence-directional dose equivalent at 0° under 70 μm,” according to the photon energy [7]. Reproduced by permission of Michiya Sasaki on behalf of ICRP.

E (MeV)

\( h_{{\Phi} }^{*} (10) \)

(pSv cm2)

\( h_{{\Phi} }^{\prime} ( 0 . 0 7 ) \)

(pSv cm2)

E(MeV)

\( h_{{\Phi} }^{*} (10) \)

(pSv cm2)

\( h_{{\Phi} }^{\prime} ( 0 . 0 7 ) \)

(pSv cm2)

0.01

0.061

7.2

0.5

2.93

2.93

0.015

0.83

3.19

0.6

3.44

3.44

0.02

1.05

1.81

0.8

4.38

4.38

0.03

0.81

0.9

1

5.2

5.2

0.04

0.64

0.62

1.5

6.9

6.9

0.05

0.55

0.5

2

8.6

8.6

0.06

0.51

0.47

3

11.1

11.1

0.08

0.53

0.49

4

13.4

13.4

0.1

0.61

0.58

5

15.5

15.5

0.15

0.89

0.85

6

17.6

17.6

0.2

1.2

1.15

8

21.6

21.6

0.3

1.8

1.8

10

25.6

25.6

0.4

2.38

2.38

   

Appendix 4

Photon conversion factors “Air Kerma-ambient dose equivalent at 10 mm” conversion factors “Air Kerma-directional dose equivalent at 0° under 70 μm,” conversion factors “Air Kerma individual dose-equivalent under 10 mm” conversion factors “air kerma-personal dose equivalent under 70 μm” [7]. Reproduced by permission of Michiya Sasaki on behalf of ICRP.

E (MeV)

H*(10)/K a

(Sv/Gy)

H′(0.07)/K a

(Sv/Gy)

H p(10, 0°)/K a

(Sv/Gy)

H p(0.07, 0°)/K a

(Sv/Gy)

0.005

   

0.750

0.01

0.008

0.95

0.009

0.947

0.0125

  

0.098

 

0.015

0.260

0.99

0.264

0.981

0.0175

  

0.445

 

0.02

0.610

1.05

0.611

1.045

0.025

  

0.883

 

0.03

1.100

1.22

1.112

1.230

0.04

1.470

1.41

1.490

1.444

0.05

1.670

1.53

1.766

1.632

0.06

1.740

1.59

1.892

1.716

0.08

1.720

1.61

1.903

1.732

0.1

1.650

1.55

1.811

1.669

0.125

  

1.696

 

0.15

1.490

1.42

1.607

1.518

0.2

1.400

1.34

1.492

1.432

0.3

1.310

1.31

1.369

1.336

0.4

1.260

1.26

1.300

1.280

0.5

1.230

1.23

1.256

1.244

0.6

1.210

1.21

1.226

1.220

0.8

1.190

1.19

1.190

1.189

1

1.170

1.17

1.167

1.173

1.5

1.150

1.15

1.139

 

2

1.140

1.14

  

3

1.130

1.13

1.117

 

4

1.120

1.12

  

5

1.110

1.11

  

6

1.110

1.11

1.109

 

8

1.110

1.11

  

10

1.100

1.10

1.111

 

Appendix 5

Neutron conversion factors “fluence-ambient dose equivalent at 10 mm” depending on the neutron energy [7]. Reproduced by permission of Michiya Sasaki on behalf of ICRP.

E (MeV)

\( h_{{\Phi} }^{*} (10) \)

(pSv cm2)

E (MeV)

\( h_{{\Phi} }^{*} (10) \)

(pSv cm2)

E (MeV)

\( h_{{\Phi} }^{*} (10) \)

(pSv cm2)

2.00E-05

10.6

0.3

233

14

520

5.00E-05

9.9

0.5

322

15

540

1.00E-04

9.4

0.7

375

16

555

2.00E-04

8.9

0.9

400

18

570

5.00E-04

8.3

1

416

20

600

1.00E-03

7.9

1.2

425

30

515

0.002

7.7

2

420

50

400

0.005

8

3

412

75

330

0.01

10.5

4

408

100

285

0.02

16.6

5

405

125

260

0.03

23.7

6

400

150

245

0.05

41.1

7

405

175

250

0.07

60

8

409

201

260

0.1

88

9

420

  

0.15

132

10

440

  

0.2

170

12

480

  

Appendix 6

Conversion factors “fluence-directional dose equivalent to 0” [7] depending on electron energy. Reproduced by permission of Michiya Sasaki on behalf of ICRP.

Energy

(MeV)

H′(0.07, 0°)/Φ

(nSv cm2)

H′(3, 0°)/Φ

(nSv cm2)

H′(10, 0°)/Φ

(nSv cm2)

0.07

0.221

  

0.08

1.056

  

0.09

1.527

  

0.10

1.661

  

0.11

1.627

  

0.13

1.513

  

0.15

1.229

  

0.20

0.834

  

0.30

0.542

  

0.40

0.455

  

0.50

0.403

  

0.60

0.366

  

0.70

0.344

  

0.80

0.329

0.045

 

1.00

0.312

0.301

 

1.25

0.296

0.486

 

1.50

0.287

0.524

 

1.75

0.282

0.512

 

2.00

0.279

0.481

0.005

2.50

0.278

0.417

0.156

3.00

0.276

0.373

0.336

3.50

0.274

0.351

0.421

4.00

0.272

0.334

0.447

5.00

0.271

0.317

0.43

6.00

0.271

0.309

0.389

7.00

0.271

0.306

0.36

8.00

0.271

0.305

0.341

10.00

0.275

0.303

0.33

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antoni, R., Bourgois, L. (2017). Protection and Operational Dosimetric Quantities and Calibration. In: Applied Physics of External Radiation Exposure. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-48660-4_3

Download citation

Publish with us

Policies and ethics