Diamond, J. M. (2005). Collapse: How societies choose to fail or succeed. Viking Penguin.
Google Scholar
Human Development Index (HDI). http://hdr.undp.org/en/content/human-development-index-hdi. Accessed June, 2016.
Worldwatch Institute Annual Report. (2004). www.worldwatch.org. Accessed May, 2016.
http://www.un.org/waterforlifedecade/scarcity.shtml
Szargut, J. (1999). Depletion of the unrestorable natural exergy resources as a measure of the ecological cost. In Proceedings of Conference ECOS’99—Efficiency, Cost, Optimization, Simulation of Energy Systems, Tokyo.
Google Scholar
Szargut, J., Ziębik, A., & Stanek, W. (2002). Depletion of the unrestorable natural exergy resources as a measure of the ecological cost. Energy Conversion and Management, 43, 1149–1163.
CrossRef
Google Scholar
Rogall, H. (2010). Nachhaltige Ökonomie. Ökonomische Theorie und Praxix einer Nachhaltigen Entwicklung. Marburg: Metropolis-Verlag, 2009. Polish translation: Ekonomia zrównoważonego rozwoju. Poznań Poland: Zysk Press.
Google Scholar
Valero, A., & Botero, E. (2002). An exergetic assessment of natural mineral capital (1): Reference environment, a thermodynamic model for degradated earth. In Proceedings of Conference on ECOS’02—Efficiency, Cost, Optimization, Simulation of Energy Systems, Berlin.
Google Scholar
Valero, A., Valero, A., & Arauzo, I. (2006). Exergy as an indicator for resources scarcity. The exergy loss of Australian mineral capita, A case study. In Proceedings of ASME IMECE2006, Chicago.
Google Scholar
Finneveden, G., & Ostlund, P. (1997). Exergies of natura resources in life-cycle assessment and other applications. Energy, 22(9), 923–931.
CrossRef
Google Scholar
International Energy Agency. https://www.iea.org/. Accessed June, 2016.
Szargut, J. (2011). Thermodynamics. Gliwice: Silesian University of Technology Press.
Google Scholar
British Petroleum. (2015). Statistical review of world energy. Retrieved from: http://www.bp.com/content/dam/bp/excel/energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-2015-workbook.xlsx. Accessed March, 2016.
Eurostat. (2014). Energy, transport and environment indicators (2014 ed.). Luxembourg: Publications Office of the European Union. 280 pp. ISSN: 2363-2372.
Google Scholar
Eurostat. (2015). Energy balance sheets, 2013 data. Luxembourg: Publications Office of the European Union, 84 pp. 2014 ISSN: 1830-7558.
Google Scholar
British Petroleum Statistics. www.bp.com. Accessed May, 2016.
Minerals Education Coalition. (2015). Minerals education coalition. Retrieved from: http://www.mineralseducationcoalition.org/. Accessed March, 2016.
Friends of the Earth. (2009). Overconsumption? Our use of the world’s natural resources. 36 pp. Retrieved from: https://www.foe.co.uk/sites/default/files/downloads/overconsumption.pdf. Accessed March, 2016.
European Environment Agency. (2012). Material resources and waste—2012 update. Retrieved from: http://www.eea.europa.eu/publications/material-resources-and-waste-2014/at_download/file. Accessed March, 2016.
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696–2705.
CrossRef
Google Scholar
USGS. (2015). Mineral commodity summaries 2015. United States Geological Survey. Retrieved from: http://minerals.usgs.gov/minerals/pubs/mcs/. Accessed March, 2016.
Ullmann’s Encyclopaedia of Industrial Chemistry. (2002). Gallium and gallium compounds (6th ed.). Rexdale, Ontario: Wiley.
Google Scholar
Mancheri, N. A. (2015). World trade in rare earths, Chinese exports restrictions and implications. Resources Policy, 46, 262–271.
CrossRef
Google Scholar
Gleich, B., Achzet, B., Mayer, H., & Rathgeber, A. (2013). An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy, 38, 350–362.
CrossRef
Google Scholar
Kooroshy, J., Meindersma, C., Podkolinski, R., Rademaker, M., Sweijs, T., & Diederen, A., et al. (2009). Scarcity of minerals. A strategic security issue, Tech. Rep. 02-01-10. The Hague Centre for Strategic Studies. Retrieved from: http://www.hcss.nl/reports/scarcity-of-minerals/14/. Accessed March, 2016.
Tilton, J. (2003). On borrowed time? Assessing the threat of mineral depletion. RFF Press, Taylor & Francis.
Google Scholar
Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P., & Wanner, B. (2010). Critical materials strategy. U.S. Department of Energy.
Google Scholar
Rosenau-Tornow, D., Buchholz, P., Riemann, A., & Wagner, M. (2009). Assessing the long-term supply risks for mineral raw materials—A combined evaluation of past and future trends. Resources Policy, 34(4), 161–175.
CrossRef
Google Scholar
Leontief, W., Koo, J., Nasar, S., & Sohn, I. (1983). The future of non-fuel minerals in the US and World Economy. Lexington, MA: Lexington Books, DC Health and Company.
Google Scholar
Sohn, I. (2006). Long-term projections of non-fuel minerals: We were wrong, but why? Resources Policy, 30(4), 259–284.
CrossRef
Google Scholar
Sohn, I. (2007). Long-term energy projections: What lessons have we learned? Energy Policy, 35(9), 4574–4584.
CrossRef
Google Scholar
Harmsen, J. H. M., Roes, A. L., & Patel, M. K. (2013). The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy, 2(50), 62–73.
CrossRef
Google Scholar
Henckens, M. L. C. M., Driessen, P. P. J., & Worrell, E. (2014). Metal scarcity and sustainability, analysing the necessity to reduce the extraction of scarce metals. Resources, Conservation and Recycling, 93, 1–8.
CrossRef
Google Scholar
Ulrich, A. E., & Frossard, E. (2014). On the history of a recurring concept: Phosphorous scarcity. Science of the Total Environment, 490, 694–707.
CrossRef
Google Scholar
Valero, A., & Valero, A. (2010). Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resources, Conservation and Recycling, 54(12), 1074–1083.
CrossRef
Google Scholar
Hubbert, M. K. (1956). Nuclear energy and the fossil fuels. Retrieved from: http://www.hubbertpeak.com/hubbert/1956/1956.pdf. Accessed March, 2016.
Hubbert, M. K. (1962). Energy resources: A report to the Committee on Natural Resources of the National Academy of Sciences. Washington, D.C.: National Academy of Sciences.
Google Scholar
Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., & Miguel, L. J. (2014). Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 77, 641–666.
CrossRef
Google Scholar
García-Olivares, A., & Ballabrera-Poy, J. (2015). Energy and mineral peaks, and a future steady state economy. Technological Forecasting and Social Change, 90, 587–598.
CrossRef
Google Scholar
Reynolds, D. B. (2014). World oil production trend: Comparing Hubbert multi-cycle curves. Ecological Economics, 98, 62–71.
CrossRef
Google Scholar
Mason, L., Prior, T., Mudd, G. M., & Giurco, D. (2011). Availability, addiction and alternatives: three criteria for assessing the impact of peak minerals on society. Journal of Cleaner Production, 19(9–10), 958–966.
CrossRef
Google Scholar
Mudd, G. M. (2007). An analysis of historic production trends in Australian base metal mining. Ore Geology Reviews, 32(1–2), 227–261.
CrossRef
Google Scholar
Northey, S., Mohr, S., Mudd, G. M., Weng, Z., & Giurco, D. (2014). Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling, 83, 190–201.
CrossRef
Google Scholar
Prior, T., Giurco, D., Mudd, G. M., Mason, L., & Behrisch, J. (2012). Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change, 22(3), 577–587.
CrossRef
Google Scholar
Tilton, J. E., & Lagos, G. (2007). Assessing the long-run availability of copper. Resources Policy, 32(1–2), 19–23.
CrossRef
Google Scholar
Yaksic, A., & Tilton, J. E. (2009). Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34(4), 185–194.
CrossRef
Google Scholar
Meinert, L. D., Robinson, G. R., Jr., & Nassar, N. T. (2016). Mineral resources: Reserves, peak production and the future. Resources, 5, 14. doi:10.3390/resources5010014.
CrossRef
Google Scholar
European Commission. (2008). The raw materials initiative—Meeting our critical needs for growth and jobs in Europe.
Google Scholar
European Commission. (2010). Critical raw materials for the EU. Retrieved from: https://ec.europa.eu/eip/raw-materials/en/system/files/ged/79%20report-b_en.pdf. Accessed March, 2016.
European Commission. (2014). Report on critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials. Retrieved from: http://www.amg-nv.com/files/Report-on-Critical-Raw-Materials-for-the-EU-2014.pdf. Accessed March, 2016.
Moss, R., Tzimas, E., Willis, P., & Kooroshy, J. (2011). Critical metals in strategic energy technologies. Assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies, Jerc Pub. No jrc65592. Eur 24884 en, JRC European Commission. Retrieved from: http://publications.jrc.ec.europa.eu/repository/handle/111111111/22726. Accessed March, 2016.
Committee on Critical Mineral Impacts of the US Economy. (2008). Minerals, critical minerals, and the US economy. Washington DC: The National Academy of Sciences, National Academies Press.
Google Scholar
U.S. Department of Energy. (2011). Critical materials strategy. December 2011. Retrieved from: http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf. Accessed March, 2016.
American Physical Society & Materials Research Society. (2011). Energy critical elements: Developing new technologies. Retrieved from http://www.mrs.org/advocacy/ece/report/. Accessed March, 2016.
British Geological Survey. (2015). Risk List 2015. An update to the supply risk index for elements or element groups that are or economic value. Retrieved from: http://www.bgs.ac.uk/downloads/start.cfm?id=3075. Accessed March, 2016.
Calvo, G. (2016). Exergy assessment of mineral extraction, trade and depletion. PhD Thesis. Universidad de Zaragoza.
Google Scholar
Ziębik, A., Szega, M., & Stanek, W. (2015). Energy systems and environment. Gliwice: Silesian University of Technology Press.
Google Scholar
EDUCOGEN. (2001 December). The European educational tool on cogeneration (2nd ed.). Cogen Europe.
Google Scholar
U.S. Department of Energy (2013). Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous coal and natural gas to electricity, DOE/NETL-2010/1397. www.netl.doe.gov.
Heck, T. (2007). Warme-Kraft-Kopplung. In: R. Dones, et al. (Eds.), LCI of the operation of the CHP plant, report No. 6-XIV. Dubendorf, CH: Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories. www.ecoinvent.ch. Translation Franziska Peter, PSI.
Szargut, J., Ziębik, A., & Kozioł, J. (1994). Racjonalizacja użytkowania energii w zakładach przemysłowych. Poradnik audytora energetycznego. Warszawa: Fundacja Poszanowania Energii.
Google Scholar