Skip to main content

Resources. Production. Depletion

Part of the Green Energy and Technology book series (GREEN)

Abstract

Any activity around the world as well as further development of humankind relies on natural resources. The primary deposits, which represent the work that nature offers us, are essential for current and future civilizations. There are several examples of ancient civilizations that collapsed due to the depletion of local natural resources; the most significant include depletion of the forests in Easter Islands, the depletion of fresh water in Central America or the depletion of the agricultural areas in South-East Asia [1]. Nowadays, these examples should not be underestimated and a rational resource management should be enhanced.

Keywords

  • International Energy Agency
  • High Heating Value
  • Primary Energy Source
  • Rare Earth Element
  • Lower Heating Value

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48649-9_2
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48649-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Fig. 2.23
Fig. 2.24
Fig. 2.25
Fig. 2.26
Fig. 2.27
Fig. 2.28
Fig. 2.29

References

  1. Diamond, J. M. (2005). Collapse: How societies choose to fail or succeed. Viking Penguin.

    Google Scholar 

  2. Human Development Index (HDI). http://hdr.undp.org/en/content/human-development-index-hdi. Accessed June, 2016.

  3. Worldwatch Institute Annual Report. (2004). www.worldwatch.org. Accessed May, 2016.

  4. http://www.un.org/waterforlifedecade/scarcity.shtml

  5. Szargut, J. (1999). Depletion of the unrestorable natural exergy resources as a measure of the ecological cost. In Proceedings of Conference ECOS’99—Efficiency, Cost, Optimization, Simulation of Energy Systems, Tokyo.

    Google Scholar 

  6. Szargut, J., Ziębik, A., & Stanek, W. (2002). Depletion of the unrestorable natural exergy resources as a measure of the ecological cost. Energy Conversion and Management, 43, 1149–1163.

    CrossRef  Google Scholar 

  7. Rogall, H. (2010). Nachhaltige Ökonomie. Ökonomische Theorie und Praxix einer Nachhaltigen Entwicklung. Marburg: Metropolis-Verlag, 2009. Polish translation: Ekonomia zrównoważonego rozwoju. Poznań Poland: Zysk Press.

    Google Scholar 

  8. Valero, A., & Botero, E. (2002). An exergetic assessment of natural mineral capital (1): Reference environment, a thermodynamic model for degradated earth. In Proceedings of Conference on ECOS’02—Efficiency, Cost, Optimization, Simulation of Energy Systems, Berlin.

    Google Scholar 

  9. Valero, A., Valero, A., & Arauzo, I. (2006). Exergy as an indicator for resources scarcity. The exergy loss of Australian mineral capita, A case study. In Proceedings of ASME IMECE2006, Chicago.

    Google Scholar 

  10. Finneveden, G., & Ostlund, P. (1997). Exergies of natura resources in life-cycle assessment and other applications. Energy, 22(9), 923–931.

    CrossRef  Google Scholar 

  11. International Energy Agency. https://www.iea.org/. Accessed June, 2016.

  12. Szargut, J. (2011). Thermodynamics. Gliwice: Silesian University of Technology Press.

    Google Scholar 

  13. British Petroleum. (2015). Statistical review of world energy. Retrieved from: http://www.bp.com/content/dam/bp/excel/energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-2015-workbook.xlsx. Accessed March, 2016.

  14. Eurostat. (2014). Energy, transport and environment indicators (2014 ed.). Luxembourg: Publications Office of the European Union. 280 pp. ISSN: 2363-2372.

    Google Scholar 

  15. Eurostat. (2015). Energy balance sheets, 2013 data. Luxembourg: Publications Office of the European Union, 84 pp. 2014 ISSN: 1830-7558.

    Google Scholar 

  16. British Petroleum Statistics. www.bp.com. Accessed May, 2016.

  17. Minerals Education Coalition. (2015). Minerals education coalition. Retrieved from: http://www.mineralseducationcoalition.org/. Accessed March, 2016.

  18. Friends of the Earth. (2009). Overconsumption? Our use of the world’s natural resources. 36 pp. Retrieved from: https://www.foe.co.uk/sites/default/files/downloads/overconsumption.pdf. Accessed March, 2016.

  19. European Environment Agency. (2012). Material resources and waste—2012 update. Retrieved from: http://www.eea.europa.eu/publications/material-resources-and-waste-2014/at_download/file. Accessed March, 2016.

  20. Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696–2705.

    CrossRef  Google Scholar 

  21. USGS. (2015). Mineral commodity summaries 2015. United States Geological Survey. Retrieved from: http://minerals.usgs.gov/minerals/pubs/mcs/. Accessed March, 2016.

  22. Ullmann’s Encyclopaedia of Industrial Chemistry. (2002). Gallium and gallium compounds (6th ed.). Rexdale, Ontario: Wiley.

    Google Scholar 

  23. Mancheri, N. A. (2015). World trade in rare earths, Chinese exports restrictions and implications. Resources Policy, 46, 262–271.

    CrossRef  Google Scholar 

  24. Gleich, B., Achzet, B., Mayer, H., & Rathgeber, A. (2013). An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy, 38, 350–362.

    CrossRef  Google Scholar 

  25. Kooroshy, J., Meindersma, C., Podkolinski, R., Rademaker, M., Sweijs, T., & Diederen, A., et al. (2009). Scarcity of minerals. A strategic security issue, Tech. Rep. 02-01-10. The Hague Centre for Strategic Studies. Retrieved from: http://www.hcss.nl/reports/scarcity-of-minerals/14/. Accessed March, 2016.

  26. Tilton, J. (2003). On borrowed time? Assessing the threat of mineral depletion. RFF Press, Taylor & Francis.

    Google Scholar 

  27. Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P., & Wanner, B. (2010). Critical materials strategy. U.S. Department of Energy.

    Google Scholar 

  28. Rosenau-Tornow, D., Buchholz, P., Riemann, A., & Wagner, M. (2009). Assessing the long-term supply risks for mineral raw materials—A combined evaluation of past and future trends. Resources Policy, 34(4), 161–175.

    CrossRef  Google Scholar 

  29. Leontief, W., Koo, J., Nasar, S., & Sohn, I. (1983). The future of non-fuel minerals in the US and World Economy. Lexington, MA: Lexington Books, DC Health and Company.

    Google Scholar 

  30. Sohn, I. (2006). Long-term projections of non-fuel minerals: We were wrong, but why? Resources Policy, 30(4), 259–284.

    CrossRef  Google Scholar 

  31. Sohn, I. (2007). Long-term energy projections: What lessons have we learned? Energy Policy, 35(9), 4574–4584.

    CrossRef  Google Scholar 

  32. Harmsen, J. H. M., Roes, A. L., & Patel, M. K. (2013). The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy, 2(50), 62–73.

    CrossRef  Google Scholar 

  33. Henckens, M. L. C. M., Driessen, P. P. J., & Worrell, E. (2014). Metal scarcity and sustainability, analysing the necessity to reduce the extraction of scarce metals. Resources, Conservation and Recycling, 93, 1–8.

    CrossRef  Google Scholar 

  34. Ulrich, A. E., & Frossard, E. (2014). On the history of a recurring concept: Phosphorous scarcity. Science of the Total Environment, 490, 694–707.

    CrossRef  Google Scholar 

  35. Valero, A., & Valero, A. (2010). Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resources, Conservation and Recycling, 54(12), 1074–1083.

    CrossRef  Google Scholar 

  36. Hubbert, M. K. (1956). Nuclear energy and the fossil fuels. Retrieved from: http://www.hubbertpeak.com/hubbert/1956/1956.pdf. Accessed March, 2016.

  37. Hubbert, M. K. (1962). Energy resources: A report to the Committee on Natural Resources of the National Academy of Sciences. Washington, D.C.: National Academy of Sciences.

    Google Scholar 

  38. Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., & Miguel, L. J. (2014). Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 77, 641–666.

    CrossRef  Google Scholar 

  39. García-Olivares, A., & Ballabrera-Poy, J. (2015). Energy and mineral peaks, and a future steady state economy. Technological Forecasting and Social Change, 90, 587–598.

    CrossRef  Google Scholar 

  40. Reynolds, D. B. (2014). World oil production trend: Comparing Hubbert multi-cycle curves. Ecological Economics, 98, 62–71.

    CrossRef  Google Scholar 

  41. Mason, L., Prior, T., Mudd, G. M., & Giurco, D. (2011). Availability, addiction and alternatives: three criteria for assessing the impact of peak minerals on society. Journal of Cleaner Production, 19(9–10), 958–966.

    CrossRef  Google Scholar 

  42. Mudd, G. M. (2007). An analysis of historic production trends in Australian base metal mining. Ore Geology Reviews, 32(1–2), 227–261.

    CrossRef  Google Scholar 

  43. Northey, S., Mohr, S., Mudd, G. M., Weng, Z., & Giurco, D. (2014). Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling, 83, 190–201.

    CrossRef  Google Scholar 

  44. Prior, T., Giurco, D., Mudd, G. M., Mason, L., & Behrisch, J. (2012). Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change, 22(3), 577–587.

    CrossRef  Google Scholar 

  45. Tilton, J. E., & Lagos, G. (2007). Assessing the long-run availability of copper. Resources Policy, 32(1–2), 19–23.

    CrossRef  Google Scholar 

  46. Yaksic, A., & Tilton, J. E. (2009). Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34(4), 185–194.

    CrossRef  Google Scholar 

  47. Meinert, L. D., Robinson, G. R., Jr., & Nassar, N. T. (2016). Mineral resources: Reserves, peak production and the future. Resources, 5, 14. doi:10.3390/resources5010014.

    CrossRef  Google Scholar 

  48. European Commission. (2008). The raw materials initiative—Meeting our critical needs for growth and jobs in Europe.

    Google Scholar 

  49. European Commission. (2010). Critical raw materials for the EU. Retrieved from: https://ec.europa.eu/eip/raw-materials/en/system/files/ged/79%20report-b_en.pdf. Accessed March, 2016.

  50. European Commission. (2014). Report on critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials. Retrieved from: http://www.amg-nv.com/files/Report-on-Critical-Raw-Materials-for-the-EU-2014.pdf. Accessed March, 2016.

  51. Moss, R., Tzimas, E., Willis, P., & Kooroshy, J. (2011). Critical metals in strategic energy technologies. Assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies, Jerc Pub. No jrc65592. Eur 24884 en, JRC European Commission. Retrieved from: http://publications.jrc.ec.europa.eu/repository/handle/111111111/22726. Accessed March, 2016.

  52. Committee on Critical Mineral Impacts of the US Economy. (2008). Minerals, critical minerals, and the US economy. Washington DC: The National Academy of Sciences, National Academies Press.

    Google Scholar 

  53. U.S. Department of Energy. (2011). Critical materials strategy. December 2011. Retrieved from: http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf. Accessed March, 2016.

  54. American Physical Society & Materials Research Society. (2011). Energy critical elements: Developing new technologies. Retrieved from http://www.mrs.org/advocacy/ece/report/. Accessed March, 2016.

  55. British Geological Survey. (2015). Risk List 2015. An update to the supply risk index for elements or element groups that are or economic value. Retrieved from: http://www.bgs.ac.uk/downloads/start.cfm?id=3075. Accessed March, 2016.

  56. Calvo, G. (2016). Exergy assessment of mineral extraction, trade and depletion. PhD Thesis. Universidad de Zaragoza.

    Google Scholar 

  57. Ziębik, A., Szega, M., & Stanek, W. (2015). Energy systems and environment. Gliwice: Silesian University of Technology Press.

    Google Scholar 

  58. EDUCOGEN. (2001 December). The European educational tool on cogeneration (2nd ed.). Cogen Europe.

    Google Scholar 

  59. U.S. Department of Energy (2013). Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous coal and natural gas to electricity, DOE/NETL-2010/1397. www.netl.doe.gov.

  60. Heck, T. (2007). Warme-Kraft-Kopplung. In: R. Dones, et al. (Eds.), LCI of the operation of the CHP plant, report No. 6-XIV. Dubendorf, CH: Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories. www.ecoinvent.ch. Translation Franziska Peter, PSI.

  61. Szargut, J., Ziębik, A., & Kozioł, J. (1994). Racjonalizacja użytkowania energii w zakładach przemysłowych. Poradnik audytora energetycznego. Warszawa: Fundacja Poszanowania Energii.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Stanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stanek, W., Valero, A., Calvo, G., Czarnowska, L. (2017). Resources. Production. Depletion. In: Stanek, W. (eds) Thermodynamics for Sustainable Management of Natural Resources . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48649-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48649-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48648-2

  • Online ISBN: 978-3-319-48649-9

  • eBook Packages: EnergyEnergy (R0)