Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers

  • Ernst-Rüdiger Olderog
  • Anders P. RavnEmail author
  • Rafael Wisniewski
Part of the NASA Monographs in Systems and Software Engineering book series (NASA)


The interplay between discrete and continuous dynamical models is discussed, and a systematic approach to developing and combining these models together is outlined. The combination is done with linking predicates that define refinement relations between the models. As a case study, we build an abstract, discr spatial model and a concrete, continuous dynamic model for traffic manoeuvrers of multiple vehicles on highways. In the discrete model we show the safety (collision freedom) of distance keeping and lane-change manoeuvrers using events and actions to specify state transitions. By linking the discrete and continuous model via suitable predicates that express the discrete events and actions as distances and set-points in the continuous model, the safety carries over to the concrete model.


Front Wheel Concrete Model Symbolic Model Lane Change Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank three anonymous reviewers for their helpful comments.


  1. 1.
    Althoff, M., Stursberg, O., Buss, M.: Safety assessment of autonomous cars using verification techniques. In: American Control Conference (ACC) 2007, pp. 4154–4159. IEEE (2007)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable bipedal robotic walking with nao via human-inspired hybrid zero dynamics. In: HSCC 2012, pp. 135–144. ACM (2012)Google Scholar
  5. 5.
    Arechiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: American Control Conference (ACC) 2012, pp. 3573–3580. IEEE (2012)Google Scholar
  6. 6.
    Damm, W., Ihlemann, C., Sofroni-Stokkermans, V.: PTIME parametric verification of safety properties for reasonable linear hybrid systems. Math. Comput. Sci. 5(4), 469–497 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: a case study on concurrency and coupling. In: HSCC 2014, pp. 145–150. ACM (2014)Google Scholar
  8. 8.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge University Press, New York (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z: Foundations and Advanced Applications. Springer, London (2014)Google Scholar
  10. 10.
    Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to hybrid systems. In: Cha, S.D., Choi, J., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model checking of hybrid systems. Form. Methods Syst. Des. 30(3), 179–198 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. STTT 10(3), 263–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Frehse, G., Guernic, C., Donzé, A., Cotton, S., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Frehse, G., Kateja, R., Guernic, C.L.: Flowpipe approximation and clustering in space-time. HSCC 2014, 203–212 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds).: Hybrid Systems. LNCS, vol. 736, Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Grumberg, O.: Abstraction and reduction in model checking. In: Schwichtenberg, H., Steinbrüggen, R. (eds.) Proof and System-Reliabilty. Nato Science Series II. Math., Physics and Chemistry, vol. 62, pp. 213–260. Kluwer Academic Publishers, Boston (2002)Google Scholar
  17. 17.
    Habets, L., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51(6), 938–948 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE (1996)Google Scholar
  19. 19.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. STTT 1(1–2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hereid, A., Kolathaya, S., Jones, M.S., Van Why, J., Hurst, J.W., Ames, A.D.: Dynamic Multi-domain Bipedal Walking with Atrias Through Slip Based Human-Inspired Control. HSCC 2014. pp. 263–272, ACM (2014)Google Scholar
  21. 21.
    Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013)Google Scholar
  22. 22.
    Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, London (1998)Google Scholar
  24. 24.
    Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. HSCC 2005, 25–53 (2005)Google Scholar
  25. 25.
    Linker, S.: Proofs for traffic safety: combining diagrams and logic. Ph.D thesis, Dept. of. Comp. Sci, Univ. of Oldenburg (2015)Google Scholar
  26. 26.
    Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Logical Methods Comput. Sci. 11(3), 2015. See:
  27. 27.
    Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M.J., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)Google Scholar
  28. 28.
    Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles. IEEE Trans. Autom. Control 43(4), 522–539 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata revisited. HSCC 2001, 403–417 (2001)Google Scholar
  30. 30.
    MathWorks. Stateflow (1995)Google Scholar
  31. 31.
    Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid systems. In: Proceedings IFAD Conference on Analysis and Design of Hybrid Systems, pp. 389–394. St. Malo, France (2003)Google Scholar
  32. 32.
    Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on l-complete approximations. Discret. Event Dyn. Syst. 12, 83–107 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18(2), 10–19 (1985)CrossRefGoogle Scholar
  34. 34.
    Nadjm-Tehrani, S., Strömberg, J.: From physical modelling to compositional models of hybrid systems. In: Langmaack, H., de Roever, W.P., Vytopil, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems, Third International Symposium Organized Jointly with the Working Group Provably Correct Systems – ProCoS, vol. 863 of LNCS, pp. 583–604. Springer (1994)Google Scholar
  35. 35.
    Olderog, E.-R., Ravn, A., Wisniewski, R.: Linking spatial and dynamic models for traffic maneuvers. In: 54th IEEE Conference on Decision and Control (CDC), 8 pp. IEEE (2015)Google Scholar
  36. 36.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Spinger, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  37. 37.
    Rajamani, R.: Vehicle Dynamics and Control. Mechanical engineering series. Springer Science, New York (2006)zbMATHGoogle Scholar
  38. 38.
    Rajhans, A., Krogh, B.H.: Compositional heterogeneous abstraction. In: HSCC 2013, pp. 253–262. ACM (2013)Google Scholar
  39. 39.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings 3rd International Conference Knowledge Representation and Reasoning (1992)Google Scholar
  40. 40.
    Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–478. Springer, Heidelberg (2005)Google Scholar
  41. 41.
    Shao, Z., Liu, J.: Spatio-temporal hybrid automata for cyber-physical systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 337–354. Springer, Heidelberg (2005)Google Scholar
  42. 42.
    Sreenath, K., Hill Jr., C.R., Kumar, V.: A partially observable hybrid system model for bipedal locomotion for adapting to terrain variations. In: HSCC 2013, pp. 137–142. ACM (2013)Google Scholar
  43. 43.
    van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Netherlands (2007)CrossRefGoogle Scholar
  44. 44.
    Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control AC 38(2), 195–207 (1993)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling traffic in urban scenarios. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 168–173. Eindhoven, NL (2008)Google Scholar
  46. 46.
    Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice Hall, New Jersey (1996)zbMATHGoogle Scholar
  47. 47.
    Zabat, M., Stabile, N., Farascaroli, S., Browand, F.: The aerodynamic performance of platoons: a final report. UC Berkeley (1995).
  48. 48.
    Zabczyk, J.: Mathematical Control Theory – An Introduction. Birkhäuser (2008)Google Scholar
  49. 49.
    Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer, Heidelberg (2013)Google Scholar
  50. 50.
    Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. IPL 40(5), 269–276 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha – A local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, June 8-11, 2014, pp. 450–457 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ernst-Rüdiger Olderog
    • 1
  • Anders P. Ravn
    • 2
    Email author
  • Rafael Wisniewski
    • 3
  1. 1.Department of Computing ScienceUniversity of OldenburgOldenburgGermany
  2. 2.Department of Computer ScienceAalborg UniversityAalborgDenmark
  3. 3.Department of AutomationAalborg UniversityAalborgDenmark

Personalised recommendations