Skip to main content

Knotting and Linking of Vortex Lines

  • Chapter
  • First Online:
Analysis of Quantised Vortex Tangle

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

The vortices of our wave-chaotic systems always form closed loops, and therefore may be expected to be knotted or to link with one other; were the vortices formed of physical string, it would not always be possible to simplify them to separate planar circles without cutting the string or somehow passing it through itself. In wave chaos the vortices may reconnect under a change of parameters, potentially changing their knot type, but still must have a characteristic average statisical behaviour. We show in this Chapter that vortex curves do form knots and links, and suggest that this behaviour becomes generic for long vortices. These results are compared against the statistical behaviour of random walks, isolating some particular knotting statistics of the filamentary tangle, and demonstrating that topological quantities can be particularly sensitive to boundary conditions. We further discuss some specific topological problems that arise when considering how knotted structures may form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.H. Kauffman, Virtual knot theory. Eur. J. Comb. 20, 91–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. D.W. Sumners, S.G. Whittington, Knots in self-avoiding walks. J. Phys. A 21, 94–1689 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Pippenger, Knots in random walks. Discret. Appl. Math. 392, 273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.L. Mansfield, Knots in hamilton cycles. Macromolecules 27, 6–5924 (1994)

    Google Scholar 

  5. K. Koniaris, M. Muthukumar, Knottedness in ring polymers. Phys. Rev. Lett. 66(17), 4–2211 (1991)

    Article  Google Scholar 

  6. R. Lua, A. Borovinskiy, A.Y. Grosberg, Fractal and statistical properties of large compact polymers: a computational study. Polymer 45, 717 (2004)

    Article  Google Scholar 

  7. Y. Diao, C. Ernst, U. Ziegler, Random walks and polygons in tight confinement. J. Phys. Conf. Ser. 544, 012017 (2014)

    Article  ADS  Google Scholar 

  8. J. Arsuaga, M. Vázquez, S. Triguers, D.W. Sumners, J. Roca, Knotting probability of dna molecules confined in restricted volumes: dna knotting in phage capsids. PNAS 99(8), 77–5373 (2002)

    Article  Google Scholar 

  9. L. Dai, J.R.C. van der Maarel, P.S. Doyle, Effect of nanoslit confinement on the knotting probability of circular dna. ACS Maroc. Lett. 1, 6–732 (2012)

    Article  Google Scholar 

  10. T. Deguchi, K. Tsurusaki, Topology of closed random polygons. J. Phys. Soc. Jpn. 62, 14–1411 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. des Cloizeaux, M.L. Mehta, Topological constraints on polymer rings and critical indices. J. Phys. 40, 70–665 (1979)

    Google Scholar 

  12. J.P.J. Michels, F.W. Wiegel, On the topology of a polymer ring. Proc. R. Soc. A 403, 84–269 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. N.T. Moore, R.C. Lua, A.Y. Grosberg, Topologically driven swelling of a polymer loop. PNAS 101, 13431–35 (2004)

    Article  ADS  Google Scholar 

  14. J. Qin, S.T. Milner, Counting polymer knots to find the entanglement length. Soft Matter 7(22), 10676–93 (2011)

    Article  ADS  Google Scholar 

  15. C. Micheletti, D. Marenduzzo, E. Orlandini, D.W. Sumners, Knotting of random ring polymers in confined spaces. J. Chem. Phys. 124, 064903 (2006)

    Article  ADS  Google Scholar 

  16. J. Arsuaga, M. Vázquez, S. Trigueros, D.W. Sumners, J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. PNAS 99(8), 5373–7 (2014)

    Article  ADS  Google Scholar 

  17. T.C.B. McLeish, Tube theory of entangled polymer dynamics. Adv. Phys. 51(6), 527–1379 (2002)

    Article  Google Scholar 

  18. S.F. Edwards, D.A. Vilgis, The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, 243 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.R. Dennis, Nodal densities of planar Gaussian random waves. Eur. Phys. J. Spec. Top. 145, 191–210, June 2007. Conference on Nodal Patterns in Physics and Mathematics, Wittenbrg, Germany, 24–28 July 2006

    Google Scholar 

  20. T. Deguchi, K. Tsurusaki, Numerical application of knot invariants and universality of random knotting. Banach Cent. Publ. 42, 77–85 (1998)

    MathSciNet  MATH  Google Scholar 

  21. C. Micheletti, D. Marenduzzo, E. Orlandini, D.W. Sumners, Simulations of knotting in confined circular DNA. Biophys. J. 95, 3591–3599 (2008)

    Article  ADS  Google Scholar 

  22. K. O’Holleran, M.R. Dennis, M.J. Padgett, Topology of light’s darkness. Phys. Rev. Lett. 102, 143902 (2009)

    Article  ADS  Google Scholar 

  23. K. O’Holleran, M.R. Dennis, F. Flossmann, M.J. Padgett, Fractality of light’s darkness. Phys. Rev. Lett. 100, 053902 (2008)

    Article  ADS  Google Scholar 

  24. J.F. Marko, Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E 79, 051905 (2009)

    Article  ADS  Google Scholar 

  25. K.C. Millett, Tying down open knots: a statistical method for identifying open knots with applications to proteins. Ser. Knots 17–203 (2005)

    Google Scholar 

  26. A. Dobay, J. Dubochet, K. Millett, P.E. Sottas, A. Stasiak, Scaling behavior of random knots. PNAS 100, 5611–5615 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Portillo, Y. Diao, R. Scharein, J. Arsuaga, M. Vazquez, On the mean and variance of the writhe of random polygons. J. Phys. A 44, 275004 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. J. des Cloizeaux, Ring polymers in solution: topological effects. J. Phys. Lett. 42, L433 (1981)

    Google Scholar 

  29. A.Y. Grosberg, Critical exponents for random knots. Phys. Rev. Lett. 85(18), 61–3858 (2000)

    Article  Google Scholar 

  30. K.V. Klenin, A.V. Vologodskiii, B.B. Anshelevich, A.M. Dykhne, M.D. Frank-Kamenetskii, Effect of excluded volume on topological properties of circular dna. J. Biomol. Struct. Dyn. 5(6), 85–1173 (1988)

    Article  Google Scholar 

  31. K. O’Holleran, M.J. Padgett, M.R. Dennis, Topology of optical vortex lines formed by the interference of three, four and five plane waves. Opt. Express 14, 44–3039 (2006)

    Article  Google Scholar 

  32. T. Aissiou, S. Dyda, D. Jakobson, Priv. Commun. (2008)

    Google Scholar 

  33. M.R. Dennis, R.P. King, J. Barry, K. O’Holleran, M.J. Padgett, Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010)

    Google Scholar 

  34. M.R. Dennis, Gaussian random wavefields and the ergodic mode hypothesis, in New Directions in Linear Acoustics and Vibration, ed. by M. Wright, R. Weaver (Cambridge University Press, 2010), pp. 59–76

    Google Scholar 

  35. W.E. Bies, E.J. Heller, Nodal structure of chaotic eigenfunctions. J. Phys. A 35, 85–5673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. M.V. Berry, M.R. Dennis, Phase singularities in isotropic random waves. Proc. Roy. Soc. A, 456, 79–2059 (2000). Including erratum

    Google Scholar 

  37. A. Nahum, J.T. Chalker, P. Serna, M. Ortuno, A.M. Somoza, Length distributions in loop soups. Phys. Rev. Lett. 111, 100601 (2013)

    Article  ADS  Google Scholar 

  38. A. Nahum, J.T. Chalker, Universal statistics of vortex lines. Phys. Rev. E 85, 031141 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander John Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Taylor, A.J. (2017). Knotting and Linking of Vortex Lines. In: Analysis of Quantised Vortex Tangle. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48556-0_5

Download citation

Publish with us

Policies and ethics