Skip to main content

Numerical Methods

  • Chapter
  • First Online:
Analysis of Quantised Vortex Tangle

Part of the book series: Springer Theses ((Springer Theses))

  • 317 Accesses

Abstract

In this work we detect and analyse the filamentary tangle of vortices in three-dimensional random eigenfunctions of different systems. Although it is simple to approximately locate vortices in a plane, efficiently tracking their threedimensional conformations is more challenging, as it is necessary to accurately capture features such as their local topology even where they approach closely. We describe here the numerical techniques used to do so and their extensions to each model system. In particular, we introduce a recursive algorithm that can focus numerical effort only around the vortex curves, efficiently but accurately capturing their small-scale geometry and topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.-F. Berggren, P. Ljung, Nature of streamlines for Berry-type wave functions in open \(3\)D cavities, in Mathematical Modeling of Wave Phenomena, AIP Conference Proceedings, vol. 1106 (2009), pp. 253–259

    Google Scholar 

  2. P. Ljung, A. Ynnerman, Extraction of intersection curves from iso-surfaces on co-located \(3\)d grids, in SIGRAD (2003), pp. 23–28

    Google Scholar 

  3. J.-P. Thirion, A. Gourdon, The 3D marching lines algorithm. Graph. Model. Im. Proc. The \(3\)D marching lines algorithm. 58(6), 503–509 (1996)

    Google Scholar 

  4. K. O’Holleran, Fractality and topology of optical singularities. PhD thesis, Department of Physics and Astronomy, Faculty of Physical Sciences, University of Glasgow (2008)

    Google Scholar 

  5. K. O’Holleran, M.R. Dennis, F. Flossmann, M.J. Padgett, Fractality of light’s darkness. Phys. Rev. Lett. 100, 053902 (2008)

    Article  ADS  Google Scholar 

  6. J. Leach, M.R. Dennis, J. Courtial, M. Padgett, Vortex knots in light. New J. Phys. 7 (2005)

    Google Scholar 

  7. K. O’Holleran, M.J. Padgett, M.R. Dennis, Topology of optical vortex lines formed by the interference of three, four and five plane waves. Opt. Express 14, 3039–3044 (2006)

    Article  ADS  Google Scholar 

  8. I.B. Halperin, Statistical mechanics of topological defects, in Les Houches Session XXV–Physics of Defects, ed. by R. Balian, K.l.éman, J.-P. Poirier (1981)

    Google Scholar 

  9. B.M. Caradoc-Davies, R.J. Ballagh, K. Burnett, Coherent dynamics of vortex formation in trapped bose-einstein condensates. Phys. Rev. Lett. 83(5), 895–898 (1999)

    Article  ADS  Google Scholar 

  10. B.M. Caradoc-Davies, Vortex Dynamics in Bose-Einstein Condensates. PhD thesis, University of Otago, Dunedin, New Zealand (2000)

    Google Scholar 

  11. M. Farge, K. Schneider, G. Pellegrino, A.A. Wray, R.S. Rogallo, Coherent vortex extraction in three-dimensional homogeneous turbulence: comparison between CVS-wavelet and POD-Fourier decompositions. Phys. Fluids 15(10), 2886–2896 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G.P. Alexander, B.G. Chen, E.A. Matsumoto, R.D. Kamien, Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84, 497 (2012)

    Article  ADS  Google Scholar 

  13. F. Flossmann, K. O’Holleran, M.R. Dennis, M.J. Padgett, Polarization singularities in \(2\)D and \(3\)D speckle fields. Phys. Rev. Lett. 100, 203902 (2008)

    Article  ADS  Google Scholar 

  14. E. Matene, V. Jacquemet, Fully automated initiation of simulated episodes of atrial arrhythmias. Europace 14, v17–v24 (2012)

    Article  Google Scholar 

  15. K. Umapathy, K. Nair, S. Masse, S. Krishnan, J. Rogers, M. Nash, K. Nanthakumar, Phase mapping of cardiac fibrillation. Circ. Arrhythmia Electrophysiol. 3, pp. 105–114 (2010)

    Google Scholar 

  16. J.M. Rogers, Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE T Bio-Med. Eng. 51(1), 56–65 (2004)

    Article  Google Scholar 

  17. S. Chavez, Q.S. Xiang, L. An, Understanding phase maps in mri: a new cutline phase unwrapping method. IEEE Trans. Med. Imaging 21(8), 966–977 (2002)

    Article  Google Scholar 

  18. R. Yamaki, A. Hirose, Singularity-spreading phase unwrapping. IEEE T Geosci. Remote 45(10), 3240–3251 (2007)

    Article  ADS  Google Scholar 

  19. H.S. Abdul-Rahman, M.A. Gdeisat, D.R. Burton, M.J. Lalor, F. Lilley, C.J. Moore, Fast and robust three-dimensional best path phase unwrapping algorithm. Apply. Opt. 46(26), 6623–6635 (2007)

    Article  ADS  Google Scholar 

  20. T. Vachaspati, A. Vilenkin, Formation and evolution of cosmic strings. Phys. Rev. D 30, 2036–2045 (1984)

    Article  ADS  Google Scholar 

  21. F.Y. Wu, The Potts model. Rev. Mod. Phys. 54, 235 (1982)

    Article  ADS  Google Scholar 

  22. L.J. Rantner, L. Wieser, M.C. Stühlinger, F. Hintringer, B. Tilg, G. Fischer, Detection of phase singularities in triangular meshes. Method Inform. Med. 46, 646–654 (2007)

    Google Scholar 

  23. M.R. Dennis, Nodal densities of planar Gaussian random waves. Eur. Phys. J. Spec. Top. 145, 191–210 (2007). Conference on Nodal Patterns in Physics and Mathematics, Wittenberg, Germany, July 24–28, 2006

    Google Scholar 

  24. M. Hindmarsh, K. Strobl, Statistical properties of strings. Nucl. Phys. B437, 471–488 (1995)

    Article  ADS  Google Scholar 

  25. J.F. Nye, Evolution of the hyperbolic umbilic diffraction pattern from airy rings. J. Opt. A 8, 304–314 (2006)

    Article  ADS  Google Scholar 

  26. A.J. Taylor, M.R. Dennis, Geometry and scaling of tangled vortex lines in three-dimensional random wave fields. J. Phys. A 47(46), 465101 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A.W. Baggaley, C.F. Barenghi, Spectrum of turbulent Kelvin-waves cascade in superfluid helium. Phys. Rev. E 83, 134509 (2011)

    Article  Google Scholar 

  28. H. Manning, Geometry of Four Dimensions. Applewood Books (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander John Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Taylor, A.J. (2017). Numerical Methods. In: Analysis of Quantised Vortex Tangle. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48556-0_2

Download citation

Publish with us

Policies and ethics