A Medical Application: Blood Cell Segmentation by Circle Detection

  • Diego OlivaEmail author
  • Erik Cuevas
Part of the Intelligent Systems Reference Library book series (ISRL, volume 117)


Automatic circle detection in digital images has been considered as an important and complex task for the computer vision community that has devoted a tremendous amount of research on seeking for an optimal circle detector. On the other hand, medical imaging is an important field of application of image processing algorithms. In particular, the analysis of blood cell images has taken a great importance for researchers in medicine and computer vision in recent years. Since blood cells can be approximated by a quasi-circular form, a circular detector algorithm may be applied. This chapter presents an algorithm for the automatic detection of blood cell images embedded into complicated and cluttered images with no consideration of the conventional Hough transform techniques. The approach is based on an evolutionary computation technique called the Electromagnetism-Like Optimization (EMO). The algorithm uses the encoding of three non-collinear points as candidate circles (x, y, r) over an edge-only image. Guided by the values of the objective function, the set of encoded candidate circles (charged particles) are evolved using the EMO algorithm so that they can fit into the blood cells on the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding accuracy, speed, and robustness.


Circle Detector Smear Image Fuzzy Cellular Neural Network Randomize Hough Transform Blood Cell Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Liu, J., Tsui, K.: Toward nature-inspired computing. ACM Commun. 49, 59–64 (2006)CrossRefGoogle Scholar
  2. 2.
    Dorini, L.B., Minetto, R., Leite, N.J.: White blood cell segmentation using morphological operators and scale-space analysis. In: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing (2007)Google Scholar
  3. 3.
    Scotti, F.: Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp. 96–101 (2005)Google Scholar
  4. 4.
    Kumar, B., Joseph, D., Sreenivasc, T.: Teager energy based blood cell segmentation. In: 14th International Conference on Digital Signal Processing, pp. 619–622 (2002)Google Scholar
  5. 5.
    Cseke, I.: A fast segmentation scheme for white blood cell images. In: 11th IAPR International Conference, pp. 530–533 (2002)Google Scholar
  6. 6.
    Wang, S., Korris, F.L., Fu, D.: Applying the improved fuzzy cellular neural network IFCNN to whithe blood cell detection. Neurocomputing 70, 1348–1359 (2007)CrossRefGoogle Scholar
  7. 7.
    Karkavitsas, G., Rangoussi, M.: Object localization in medical images using genetic algorithms. World Acad Sci Eng Technol 2, 6–9 (2005)Google Scholar
  8. 8.
    Muammar, H., Nixon, M.: Approaches to extending the Hough transform. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing ICASSP-89, vol. 3, pp. 1556–1559 (1989)Google Scholar
  9. 9.
    Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: IEEE Colloquium on the Hough Transform, pp. 1–4 (1993)Google Scholar
  10. 10.
    Fischer, M., Bolles, R.: Random sample consensus: A paradigm to model fitting with applications to image analysis and automated cartography. CACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput. Vis. Image. Underst. 63, 512–526 (1996)CrossRefGoogle Scholar
  12. 12.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Han, J.H., Koczy, L.T., Poston, T.: Fuzzy Hough transform. In: Proceedings of 2nd International Conference on Fuzzy Systems, vol. 2, pp. 803–808 (1993)Google Scholar
  14. 14.
    Becker, J., Grousson, S., Coltuc, D.: From Hough transforms to integral transforms. Int. Geosci. Remote Sens. Symp. IGARSS-02. 3:1444–1446 (2002)Google Scholar
  15. 15.
    Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. 16(9), 901–905 (1994)CrossRefGoogle Scholar
  16. 16.
    Lutton, E., Martinez, P.: A genetic algorithm for the detection 2-D geometric primitives on images. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 526–528 (1994)Google Scholar
  17. 17.
    Yao, J., Kharma, N., Grogono, P.: Fast robust GA-based ellipse detection. In: Proceedings of 17th International Conference on Pattern Recognition ICPR-04, vol. 2, pp. 859–862. Cambridge, UK (2004)Google Scholar
  18. 18.
    Yuen, S., Ma, C.: Genetic algorithm with competitive image labelling and least square. Pattern Recogn. 33, 1949–1966 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recogn. Lett. 27, 652–657 (2006)CrossRefGoogle Scholar
  20. 20.
    Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Circle detection using electro-magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rosin, P.L.: Further five point fit ellipse fitting. In: Proceedings of 8th British Machine Vision Conference, pp. 290–299. Cochester, UK (1997)Google Scholar
  22. 22.
    Zhang, X., Rosin, P.L.: Superellipse fitting to partial data. Pattern Recogn. 36, 743–752 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Karkavitsas, G., Rangoussi, M.: Object localization in medical images using genetic algorithms. Int. J. Inf. Commun. Eng. 1(4), 204–207 (2005)Google Scholar
  24. 24.
    İlker, S., Shu-Cherng, F.: An Electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rocha, A.C., Fernandes, E.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. Int. J. Comput. Math. 86(10–11), 1932–1946 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Birbil, S., Fang, C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. J. Global Optim. 30(2), 301–318 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20, 100–106 (1987)CrossRefzbMATHGoogle Scholar
  28. 28.
    Boccignone, G., Ferraro, M., Napoletano, P.: Diffused expectation maximisation for image segmentation. Electron. Lett. 40, 1107–1108 (2004)CrossRefGoogle Scholar
  29. 29.
    Boccignonea, G., Napoletano, P., Caggiano, V., Ferraro, M.: A multi-resolution diffused expectation–maximization algorithm for medical image segmentation. Comput. Biol. Med. 37, 83–96 (2007)CrossRefGoogle Scholar
  30. 30.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, Reading (1992)Google Scholar
  31. 31.
    Wang, M., Chu, R.: A novel white blood cell detection method based on boundary support vectors. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA (2009)Google Scholar
  32. 32.
    Wu, J., Zeng, P., Zhou, Y., Oliver, C.: A novel color image segmentation method and its application to white blood cell image analysis. In: 8th International Conference on Signal Processing (2006)Google Scholar
  33. 33.
    Wang, S., Korris, F.L., Fu, D.: Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection. Neurocomputing. 70:1348–1359 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Tecnológico de Monterrey, Campus GuadalajaraZapopanMexico

Personalised recommendations